metapost for better rendering

This commit is contained in:
Yann Esposito 2012-10-18 17:51:57 +02:00
parent 0b244e6615
commit 556ac267fb

View file

@ -60,7 +60,7 @@ And will discuss about some categories.
> - For every pair of objects \\((A,B)\\) a set \\(\hom(A,B)\\) > - For every pair of objects \\((A,B)\\) a set \\(\hom(A,B)\\)
> of _morphisms_ \\(f:A→B\\) (Another notation for \\(f\in \hom(A,B)\\)) > of _morphisms_ \\(f:A→B\\) (Another notation for \\(f\in \hom(A,B)\\))
> - A composition operator \\(∘\\) > - A composition operator \\(∘\\)
> which associate to each couple \\(g:A→B\\), \\(f:B→C\\) another morphism \\(f∘g:A→C\\). > which associate to each couple \\(f:A→B\\), \\(g:B→C\\) another morphism \\(g∘f:A→C\\).
> >
> With the following properties > With the following properties
> >
@ -68,23 +68,45 @@ And will discuss about some categories.
> \\(id_x:x→x\\) > \\(id_x:x→x\\)
> s.t. for any morphism \\(f:A->B\\), > s.t. for any morphism \\(f:A->B\\),
> \\(id_A∘f = f = f∘id_B\\) > \\(id_A∘f = f = f∘id_B\\)
> - for all triplet of morphisms \\(h:A->B\\), \\(g:B->C\\) and \\(f:C->D\\) > - for all triplet of morphisms \\(f:A->B\\), \\(g:B->C\\) and \\(h:C->D\\)
> \\( (f∘g)∘h = f∘(g∘h) \\) > \\( (h∘g)∘f = h∘(g∘f) \\)
<mpost title="Identity is left and right neutral element for ∘">
z0=origin;
z1=(2gu,0);
<graph title="Identity is left and right neutral element for ∘"> drawState(z0,btex $A$ etex);
A -> A [label="idA"] drawState(z1,btex $B$ etex);
B -> B [label="idB"]
A -> B [label="f∘idA=f=idB∘f"]
</graph>
<graph title="Associativity"> drawLoop(z0,btex $id_A$ etex);
A -> B [label="f"] drawLoop(z1,btex $id_B$ etex);
B -> C [label="g"]
C -> D [label="h"] drawEdge(z0,z1,btex $f\circ id_A = f = id_B\circ f$ etex);
A -> C [label="g∘f",style="bold",fontcolor="cyan",color="cyan",constraint="false"] </mpost>
B -> D [label="h∘g",style="bold",fontcolor="yellow",color="yellow",constraint="false"]
A -> D [label="(h∘g)∘f=h∘(g∘f)",style="bold",color="red",fontcolor="red",constraint="false"] <mpost title="Associativity">
</graph> z0=origin;
z1=(gu,0);
z2=(2gu,0);
z3=(3gu,0);
drawState(z0,btex $A$ etex);
drawState(z1,btex $B$ etex);
drawState(z2,btex $C$ etex);
drawState(z3,btex $D$ etex);
drawEdge(z0,z1,btex $f$ etex);
drawEdge(z1,z2,btex $g$ etex);
drawEdge(z2,z3,btex $h$ etex);
drawoptions(withcolor blue);
drawEdgeWithAngle(z0,z2,btex $g\circ f$ etex,30);
drawoptions(withcolor yellow);
drawEdgeWithAngle(z1,z3,btex $h\circ g$ etex,-30);
drawoptions(withcolor red);
drawEdgeWithAngle(z0,z3,btex $(h\circ g)\circ f = h\circ (g\circ f)$ etex,45);
</mpost>
### Representation of Category ### Representation of Category
@ -96,17 +118,24 @@ A naïve representation (which can work in many cases) is to represent
a specific category as a directed graph. a specific category as a directed graph.
Here is a first example of the representation of a category: Here is a first example of the representation of a category:
<graph title="First Naïve Category Representation"> <mpost title="First Naïve Category Representation">
z0=origin;
z1=2/3(gu,gu);
z2=(4/3gu,0);
A -> B [label="f"] drawState(z0,btex $A$ etex);
B -> C [label="g"] drawState(z1,btex $B$ etex);
A -> C [label="h"] drawState(z2,btex $C$ etex);
A -> A [label="idA"] drawEdge(z0,z1,btex $f$ etex);
B -> B [label="idB"] drawEdge(z1,z2,btex $g$ etex);
C -> C [label="idC"] drawEdge(z0,z2,btex $h$ etex);
</graph> drawLoop(z0,btex $id_A$ etex);
drawLoop(z1,btex $id_B$ etex);
drawLoop(z2,btex $id_C$ etex);
</mpost>
From this graph we can conclude without any ambiguity that: From this graph we can conclude without any ambiguity that:
@ -122,33 +151,35 @@ What is \\(∘\\)?
Now, we can add informations to our previous representation. Now, we can add informations to our previous representation.
We simply add a relation between 3 arrows that represent the composition. We simply add a relation between 3 arrows that represent the composition.
<graph title="Naïve Category Representation"> <mpost title="Naïve Category Representation">
z0=origin;
z1=(gu,gu);
z2=(2gu,0);
A[pos="0,0!"] drawState(z0,btex $A$ etex);
B[pos="1.5,1.5!"] drawState(z1,btex $B$ etex);
C[pos="3,0!"] drawState(z2,btex $C$ etex);
f[pos="0.75,0.75!",label="", fixedsize="false", width=0,height=0,shape=none]; drawEdge(z0,z1,btex $f$ etex);
A -> f[label="f", arrowhead=None] drawEdge(z1,z2,btex $g$ etex);
f -> B drawEdge(z0,z2,btex $h$ etex);
g[pos="2.25,0.75!",label="", fixedsize="false", width=0,height=0,shape=none]; drawoptions( withcolor red );
B -> g[label="g", arrowhead=None]
g -> C
z3=.6[z0,z1];
z4=.6[z2,z1];
fg [pos="1.5,0.75!",label="", fixedsize="false", width=0,height=0,shape=none]; draw z3 -- z4 dashed evenly;
AC [pos="1.5,0!",label="", fixedsize="false", width=0,height=0,shape=none];
f -> fg [color="red",style=dashed,arrowhead=None] z5 = .45[z3,z4];
fg -> g [color="red",style=dashed,arrowhead=None] z6 = .55[z0,z2];
fg -> AC [label="h=g∘f",fontcolor="red",color="red",style=bold] path bigarrow;
bigarrow := subpath (.1,.9) of z5 -- z6;
drawarrow bigarrow withpen pencircle scaled 1.5;
A -> AC [label="h",arrowhead=None] label.rt(btex $h = g \circ f$ etex, .5[z5,z6]);
AC -> C
</mpost>
</graph>
Now we have a complete representation. Now we have a complete representation.
We don't have to represent \\(idX\\), we know there are there. We don't have to represent \\(idX\\), we know there are there.
@ -228,42 +259,49 @@ A -> C [label="h'\n=g'∘f\n=g∘f'"]
Which can be a valid category by choosing ∘ appropriately? Which can be a valid category by choosing ∘ appropriately?
The identity morphisms are assumed. The identity morphisms are assumed.
<graph title="Can be a valid category"> <mpost title="This can be a valid category">
A[label="★"] z0=(0,0);
B[label="★"] z1=2(u,0);
C[label="★"] z2=2(2u,0);
A -> B
B -> C
A -> C [constraint=false]
</graph>
<graph title="Cannot be a category; no candidate for \(g∘f\)."> drawedge(z0,z1,"");
A[label="★"] drawedge(z1,z2,"");
B[label="★"] drawedgeangle(z0,z2,"",50);
C[label="★"]
A -> B[label="f"]
B -> C[label="g"]
</graph>
<graph title="Also a valid category"> drawstate(z0);
A[label="★",pos="0,50"] drawstate(z1);
B[label="★",pos="50,50"] drawstate(z2);
C[label="★",pos="25,0"] </mpost>
A -> B
B -> A
B -> C
A -> C
</graph>
<graph title="Not a category; no \(A→C\) while there exists \(A→B\) and \(B→C\)"> <mpost title="Cannot be a category; no candidate for g∘f.">
A[pos="0,0"] z0=(0,0); z1=3(u,0); z2=3(2u,0);
B[pos="2,0"] drawstate(z0); drawstate(z1); drawstate(z2);
C[pos="1,-1"]
A -> B drawedge(z0,z1,btex $f$ etex);
B -> C drawedge(z1,z2,btex $g$ etex);
B -> A </mpost>
C -> A
</graph> <mpost title="Also a possible valid category">
z0=(0,0); z1=(4u,0); z2=(2u,-3u);
drawstate(z0); drawstate(z1); drawstate(z2);
drawedgeangle(z0,z1,"",35);
drawedgeangle(z1,z0,"",-145);
drawedge(z0,z2,"");
drawedge(z1,z2,"");
</mpost>
<mpost title="Not a category; no \(A→C\) while there exists \(A→B\) and \(B→C\)">
z0=(0,0); z1=(gu,0); z2=(.5gu,-.75gu);
drawState(z0,btex $A$ etex);
drawState(z1,btex $B$ etex);
drawState(z2,btex $C$ etex);
drawEdgeWithAngle(z0,z1,"",35);
drawEdgeWithAngle(z1,z0,"",-145);
drawEdge(z1,z2,"");
drawEdge(z2,z0,"");
</mpost>
<graph title="Cannot be a category ; no possible associative ∘<br/>\((h∘g)∘f=idB∘f=f≠h=h∘idA=h∘(g∘f)\)"> <graph title="Cannot be a category ; no possible associative ∘<br/>\((h∘g)∘f=idB∘f=f≠h=h∘idA=h∘(g∘f)\)">
A -> B[label="g"] A -> B[label="g"]
@ -305,19 +343,33 @@ Typical examples:
- `Integer` with `(*)` and `1` - `Integer` with `(*)` and `1`
- Generalized by `Monoid a` with `(<>)` and `mempty` - Generalized by `Monoid a` with `(<>)` and `mempty`
<graph title="Strings are Categories"> <mpost title="Strings are Categories">
u:=.5cm;
def drawloop(expr a,b,l) =
pair ba,ea;
path circ,p,s;
p:=a{1,1}..b..{1,-1}cycle;
circ:= fullcircle scaled 6 shifted a;
ba = circ intersectionpoint (subpath (0,1) of p);
ea = circ intersectionpoint (subpath (1,2) of p);
s:= ba{1,1}..b..{1,-1}ea;
drawarrow s;
label.top(l,b);
enddef;
★ -> ★[label="e"] pair A,B,C,D,E,F;
★ -> ★[label="x"] A:=(0,0);
★ -> ★[label="y"] B:=(0,u);
★ -> ★[label="..."] C:=(0,2u);
D:=(0,3u);
E:=(0,4u);
F:=(0,6u);
</graph> drawloop(A,B,btex $\varepsilon$ etex);
drawloop(A,C,btex $a$ etex);
metapost test drawloop(A,D,btex $b$ etex);
drawloop(A,E,btex $ab$ etex);
<mpost title="metapost test"> drawloop(A,F,btex $\omega$ etex);
pair A, B, C; draw (0,4.8u)--(0,5.8u) dashed withdots;
A:=(0,0); B:=(1cm,0); C:=(0,1cm); draw A withpen pencircle scaled 4bp;
draw A--B--C;
</mpost> </mpost>