Category Theory & Programming

by Yann Esposito

@yogsototh, +yogsototh

ENTER FULLSCREEN

HTML presentation: use arrows, space to navigate.

- General overview - Definitions - Applications

Plan

General Overview

Recent Math Field

1942-45, Samuel Eilenberg & Saunders Mac Lane

Certainly one of the more abstract branches of math

- New math foundation formalism abstraction, package entire theory*
- → When is one thing equal to some other thing? Rarry Mazur, 2007

^{★:} When is one thing equal to some other thing?, Barry Mazur, 2007

Thysics, Topology, Logic and Computation: A Hosetta Stone, John C. Baez, Mike Stay, 2009

From a Programmer perspective

Category Theory is a new language/framework for Math

Math Programming relation

Programming is doing Math

Not convinced?

Certainly a *vocabulary* problem.

One of the goal of Category Theory is to create a homogeneous vocabulary between different disciplines.

Vocabulary

Math vocabulary used in this presentation:

Category, Morphism, Associativity, Preorder, Functor, Endofunctor, Categorial property, Commutative diagram, Isomorph, Initial, Dual, Monoid, Natural transformation, Monad, Klesli arrows, κατα-morphism,

Programmer Translation

Arrow String-like Acyclic graph	
Acyclic graph	
Acyclic graph	
The same	
rearrangement	function
LOLCat	P
	The same rearrangement

- General overview - Category - Definitions - Intuition - Applications - Examples - Functor

Plan

- Examples

Category

A way of representing things and ways to go between things.

A Category \(\mathcal{C}\\) is defined by:

- Objects \(\lob{C}\\),Morphisms \(\long{C}\\),
- a Composition law ()
- obeying some Properties.

Category: Objects

 $\(\b)\$ is a collection

Category: Morphisms

\(A\) and \(B\) objects of \(\C\)
\(\hom{A,B}\) is a collection of morphisms
\(f:A→B\) denote the fact \(f\) belongs to \(\hom{A,B}\)

\(\hom{\C}\) the collection of all morphisms of \(\C\)

Category: Composition

 $Composition \ (\ \cdot\): associate \ to \ each \ couple \ \ (f:A \to B, \ g:B \to C \setminus) \ \$\$g \cdot f:A \land right arrow \ C\$\$$

Category laws: neutral element

for each object \(X\), there is an \(\id_X:X \to X\), such that for each \(f:A \to B\):

Category laws: Associativity

Composition is associative:

Commutative diagrams

Two path with the same source and destination are equal.

 $\(id_B \cdot f = f = f \cdot id_A$

Question Time!

- French-only joke -

 $\C\$,\hom{\C}\) fixed, is there a valid $\$?

 $\C\$,\hom{\C}\) fixed, is there a valid $\$?

no candidate for \(f:C→B\

no candidate for \(f:C→B\)
NO

\((h-g)-f=\id_B-f=f\) \(h-(g-f)=h-\id_A=h\) but \(h≠f\) NO

Categories Examples

Category \(\Set\)

- \(\ob{\Set}\) are all the sets
- $\(\hom\{E,F\}\)$ are *all* functions from $\(E\)$ to $\(F\)$
- . is functions composition

Category \(\Set\)

- \(\ob{\Set}\) are all the sets

- . is functions composition

- $\(\hom\{E,F\}\)$ are *all* functions from $\(E\)$ to $\(F\)$
- V
- \(\ob{\Set}\) is a proper class; not a set
- $\(\hom\{E,F\}\)$ is a set
- \(\Set\) is then a locally **small** category

Categories Everywhere?

- \(\Mon\): (monoids, monoid morphisms,)
- \(\Vec\): (Vectorial spaces, linear functions,)
- \(\Grp\): (groups, group morphisms,)
- \(\Rng\): (rings, ring morphisms,)
- Any deductive system T: (theorems, proofs, proof concatenation)
- \(\Hask\): (Haskell types, functions, $\overline{(.)}$)
- ...

Smaller Examples

Strings

- \(\ob{Str}\) is a singleton
- \(\hom{Str}\) each string
- · is concatenation (++)
- "" ++ u = u = u ++ ""
- (u ++ v) ++ w = u ++ (v ++ w

Finite Example?

Graph

- \(\ob{G}\\) are vertices
- \(\hom{G}\) each path
- · is path concatenation
- \(\ob{G}=\{X,Y,Z\}\),
- \(\hom{G}=\{ ϵ , α , β , γ , $\alpha\beta$, $\beta\gamma$,...\}\)
- \(αβ.γ=αβγ\)

Number construction

Each Numbers as a whole category

Degenerated Categories: Monoids

Each Monoid $((M,e,\odot): \ob\{M\}=\{\cdot\},\hom\{M\}=M,\circ = \odot)$

Only one object.

Examples:

Degenerated Categories: Preorders \((P,≤)\)

- $\setminus (\bP=\P),$
- \(\hom{x,y}=\{x\leq y\} \Leftrightarrow x\leq y\),
- $((y \le z) \setminus (x \le y) = (x \le z))$

At most one morphism between two objects.

Degenerated Categories: Discrete Categories

Any Set

Any set $(E: \b\{E\}=E, \hom\{x,y\}=\x\} \Leftrightarrow x=y)$

Only identities

Categorical Properties

Any property which can be expressed in term of category, objects, morphism and composition.

- Dual: \(\D\) is \(\C\) with reversed morphisms.

- Unique ("up to isormophism")

 Terminal: \(T\)in\ob{\C}\) s.t. \(T\) is initial in the dual of \(\\C\)
- Functor: structure preserving mapping between categories

Initial: \(Z\in\ob{\C}\) s.t. \(∀Y∈\ob{\C}, \#\hom{Z,Y}=1\)

- ...

Isomorph

isomorphism: $\langle (f:A \rightarrow B) \rangle$ which can be "undone" i.e.

in this case, $\(A\) \& \(B\)$ are *isomorphic*.

A≌B means A and B are essentially the same.

In Category Theory, = is in fact mostly ≅.

For example in commutative diagrams.

Functor

A functor is a mapping between two categories. Let $\(\C\)$ and $\(\D\)$ be two categories. A functor $\(\F\)$ from $\(\C\)$ to $\(\D\)$:

- Associate objects: $(A\sin b\{C\})$ to $(F(A)\sin b\{D\})$
- Associate morphisms: \(\(\((f:A\\\)\)\) to \(\(\(\((F(f):\\)F(A)\\\)\) such that

Functor Example (ob → ob)

Functor Example (hom → hom)

Functor Example

Endofunctors

An *endofunctor* for $\(\C\)$ is a functor $\(F:\C\to\C\)$.

Category of Categories

Categories and functors form a category: \ (\Cat\)

- \(\ob{\Cat}\) are categories
- \(\hom{\Cat}\) are functors
- . is functor composition

Plan - Why? - What? - \(\Hask\) category - How? - Functors - Monads - ката-morphisms

Hask

Category \(\Hask\):

- \(\ob{\Hask} = \) Haskell types
- \(\hom{\Hask} = \) Haskell functions
- = (.) Haskell function composition

Forget glitches because of undefined.

Haskell Kinds

In Haskell some types can take type variable(s). Typically: [a].

Types have *kinds*; The kind is to type what type is to function. Kind are the types for types (so meta).

```
Int, Char :: *
[], Maybe :: * -> *
(,) :: * -> * -> *
[Int], Maybe Char, Maybe [Int] :: *
```

Haskell Types

Sometimes, the type determine a lot about the function★:

```
fst:: (a,b) -> a -- Only one choice
snd:: (a,b) -> b -- Only one choice
f:: a -> [a] -- Many choices
-- Possibilities: f x=[], or [x], or [x,x] or [x,...,x]

?:: [a] -> [a] -- Many choices
-- can only rearrange: duplicate/remove/reorder elements
-- for example: the type of addOne isn't [a] -> [a]
addOne | = map (+1) |
-- The (+1) force 'a' to be a Num.
```

★:Theorems for free!, Philip Wadler, 1989

Haskell Functor vs \(\Hask\) Functor

A Haskell Functor is a type $\boxed{F :: * -> *}$ which belong to the type class $\boxed{Functor}$; thus instantiate $\boxed{fmap :: (a -> b) -> (F a -> F b)}$.

The couple $\overline{(F,fmap)}$ is a $\Lambda \$ is functor if for any $\overline{x} :: F = a$:

-
$$fmap id x = x$$

- [fmap (f.g) x = (fmap f . fmap g) x]

Haskell Functors Example: Maybe

data Maybe a = Just a | Nothing instance Functor Maybe where fmap :: (a -> b) -> (Maybe a -> Maybe b) fmap f (Just a) = Just (f a) fmap f Nothing = Nothing

```
fmap (+1) (Just 1) == Just 2
fmap (+1) Nothing == Nothing
fmap head (Just [1,2,3]) == Just 1
```

Haskell Functors Example: List

```
instance Functor ([]) where
fmap :: (a -> b) -> [a] -> [b]
fmap = map
```

```
fmap (+1) [1,2,3] == [2,3,4]
fmap (+1) [] == []
fmap head [[1,2,3],[4,5,6]] == [1,4]
```

Haskell Functors for the programmer

Functor is a type class used for types that can be mapped over.

- Containers: [], Trees, Map, HashMap..
- "Feature Type":
 - Maybe a: help to handle absence of a.
 - Ex: safeDiv x $0 \Rightarrow$ Nothing
 - Either String a: help to handle errors

Ex: reportDiv x 0 ⇒ Left "Division by 0!"

Haskell Functor intuition

Put normal function inside a container. Ex: list, trees...

Haskell Functor properties

Haskell Functors are:

- endofunctors ; \(F:\C→\C\) here \(\C = \Hask\),
- a couple (Object, Morphism) in \(\Hask\).

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell types is fractal:

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell types is fractal:

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell types is fractal:

"Non Haskell" Hask's Functors

A simple basic example is the \(id_\Hask\) functor. It simply cannot be expressed as a couple (F, fmap) where

- fmap :: (a -> b) -> (F a) -> (F b)
- fmap :: (a -> b) -> (F a) -> (F b)

- F(T)=Int

Another example:

- F(f)=_->0

Also Functor inside \(\Hask\)

\(\mathtt{[a]}\in \ob{\Hask}\) but is also a category. Idem for Int.

length is a Functor from the category [a] to the cateogry Int:

- \(\ob{\mathtt{[a]}}=\{ · \}\) - \(\hom\\mathtt{[a]}}=\mathtt{[a]}\)

- \(=\mathtt{(++)}\)

- id: length [] = 0

- \(\hom{\mathtt{Int}}=\mathtt{Int}\)

- \(\ob{\mathtt{Int}}=\{ · \}\)

Category of \(\Hask\) Endofunctors

Category of Functors

If $\(\C\)$ is small ($\C\)$ is a set). All functors from $\(\C\)$ to some category $\(\D\)$ form the category $\(\D\)$.

- \(\ob{\mathrm{Func}(\C,\D)}\): Functors \(F:\C \rightarrow\D\)
- \(\hom\\mathrm\Func\)(\C,\D)\\): natural transformations
- -: Functor composition

 $\mbox{\mbox{\colored}{\c$

Natural Transformations

Let $\(F\)$ and $\(G\)$ be two functors from $\(\C\)$ to $\(\D\)$.

A natural transformation: family $\eta : \langle (\eta_X \in X) \rangle$ for

 $\(X\in \mathbb{C}\)$ s.t.

ex: between Haskell functors; F a -> G a
Rearragement functions only.

Natural Transformation Examples (1/4)

```
data Tree a = Empty | Node a [Tree a toTree :: [a] -> Tree a toTree [] = Empty toTree (x:xs) = Node x [toTree xs]
```

toTree is a natural transformation. It is also a morphism from [] to Tree in the Category of \(\Hask\) endofunctors.

Natural Transformation Examples (2/4)

toList is a natural transformation. It is also a morphism from Tree to [] in the Category of \(\Hask\) endofunctors.

Natural Transformation Examples (3/4)

```
toMaybe :: [a] -> Mayb
toMaybe [] = Nothing
toMaybe (x:xs) = Just
```

toMaybe is a natural transformation. It is also a morphism from [] to Maybe in the Category of \(\Hask\\) endofunctors.

Natural Transformation Examples (4/4)

```
mToList :: Maybe a -> [
mToList Nothing = []
mToList Just x = [x]
```

toMaybe is a natural transformation. It is also a morphism from [] to Maybe in the Category of \(\Hask\) endofunctors.

Composition problem

The Problem; example with lists:

```
f x = [x] \Rightarrow f 1 = [1] \Rightarrow (f.f) 1 = [[1]] X

g x = [x+1] \Rightarrow g 1 = [2] \Rightarrow (g.g) 1 = ERROR [2]+1 X

h x = [x+1,x^*3] \Rightarrow h 1 = [2,3] \Rightarrow (h.h) 1 = ERROR [2,3]+1 X
```

The same problem with most $f :: a \rightarrow F a$ functions and functor F.

Composition Fixable?

How to fix that? We want to construct an operator which is able to compose:

More specifically we want to create an operator

of type

$$\bigcirc$$
 :: (b -> F c) -> (a -> F b) -> (a -> F c)

Note: if F = I, O = (.)

Fix Composition (1/2)

Goal, find: ◎ :: (b -> F c) -> (a -> F b) -> (a -> F c) [f :: a -> F b, [g :: b -> F c]:

- First apply f to $x \Rightarrow f x :: F b$
- First apply [] to $[X] \Rightarrow [] X ... F L$
- Then how to apply g properly to an element of type F b?

Fix Composition (2/2)

Goal, find: \bigcirc :: (b -> F c) -> (a -> F b) -> (a -> F c) [f :: a -> F b], [g :: b -> F c], [f x :: F b]:

- Use fmap :: (t -> u) -> (F t -> F u)!
- $[(fmap g) :: F b \rightarrow F (F c)]; (t=b, u=F c)$
- (fmap g) (f x) :: F (F c) it almost WORKS!
- We lack an important component, join :: F (F c) -> F
- $(g \bigcirc f) x = join ((fmap g) (f x)) \bigcirc$
 - is the Kleisli composition; in Haskell: <=< (in Control.Monad

Necessary laws

For © to work like composition, we need join to hold the following properties:

- abusing notations denoting join by ⊙; this is equivalent to

$$(\mathsf{F} \odot \mathsf{F}) \odot \mathsf{F} = \mathsf{F} \odot (\mathsf{F} \odot \mathsf{F})$$

Klesli composition

Now the composition works as expected. In Haskell \bigcirc is \bigcirc in Control.Monad.

```
g \ll f = x \rightarrow join ((fmap g) (f x))
```

```
\begin{array}{l} f \ x = [x] & \Rightarrow f \ 1 = [1] \ \Rightarrow (f <=< f) \ 1 = [1] \ \checkmark \\ g \ x = [x+1] & \Rightarrow g \ 1 = [2] \ \Rightarrow (g <=< g) \ 1 = [3] \ \checkmark \\ h \ x = [x+1,x^*3] \Rightarrow h \ 1 = [2,3] \Rightarrow (h <=< h) \ 1 = [3,6,4,9] \ \checkmark \end{array}
```

We reinvented Monads!

A monad is a triplet $\overline{(M, \odot, \eta)}$ where

- \(M ⊙ (M ⊙ M) = (M ⊙ M) ⊙ M\)

Satisfying

Compare with Monoid

A Monoid is a triplet $((E, \cdot, e))$ s.t.

- \(e:1→E\)

Satisfying

$$- (e \cdot x = x = x \cdot e, \forall x \in E)$$

Monads are just Monoids

A Monad is just a monoid in the category of endofunctors, what's the problem?

The real sentence was:

All told, a monad in X is just a monoid in the category of endofunctors of X, with product \times replaced by composition of endofunctors and unit set by the identity endofunctor.

Example: List

- [] :: * -> * an Endofunctor
- \(⊙:M×M→M\) a nat. trans. ([join :: M (M a) -> M a)
- \(η :I→M\) a nat. trans.

```
-- In Haskell ⊙ is "join" in "Control.Monad"
```

-- In Haskell the "return" function (unfortunate name)

Example: List (law verification)

Example: List is a functor (join is ⊙)

$$- \setminus (\mathsf{M} \odot (\mathsf{M} \odot \mathsf{M}) = (\mathsf{M} \odot \mathsf{M}) \odot \mathsf{M} \setminus)$$

$$- \setminus (\eta \odot M = M = M \odot \eta \setminus)$$

$$\begin{array}{l} \text{join [join [[x,y,...,z]]] = join [[x,y,...,z]]} \\ = \text{join (join [[[x,y,...,z]]])} \\ \text{join } (\eta \ [x]) = [x] = \text{join } [\eta \ x] \end{array}$$

Therefore $([],join,\eta)$ is a monad.

Monads useful?

A LOT of monad tutorial on the net. Just one example; the State Monad

DrawScene to State Screen DrawScene; still pure.

```
main = drawImage (width.height)

drawImage :: Screen -> DrawScene
drawImage screen =
drawPoint p screen
drawCircle c screen
drawRectangle rectangle screen
drawGricte circle screen
drawGricte circle screen = ...
drawGricte circle screen = ...
drawGricte circle screen = ...
drawRectangle rectangle screen = ...
```

```
main = do
put (Screen 1024 768)
drawlmage :: State Screen DrawScene
drawlmage = do
drawPoint p
drawCircle c
drawRectangle r

drawPoint :: Point -> State Screen DrawScene
drawPoint p = do
Screen width height <= get
...
```

fold

ката-morphism

ката-morphism: fold generalization

fold :: (acc -> a -> acc) -> acc -> [a] -> acc

Idea: put the accumulated value inside the type.

acc type of the "accumulator":

```
-- Equivalent to fold (+1) 0 "cata"
(Cons 'c' (Cons 'a' 2))
(Cons 'c' 3)
```

But where are all the informations? (+1) and 0?

ката-morphism: Missing Information

Where is the missing information?

- Functor operator fmap

- Algebra representing the $\overline{(+1)}$ and also knowing the $\overline{0}$.

First example, make length on [Char]

ката-morphism: Type work

```
data StrF a = Cons Char a | Nil
data Str = StrF Str
-- generalize the construction of Str to other datatype
-- Mu :: type fixed point
-- Example
```

ката-morphism: missing information retrieved

```
type Algebra f a = f a -> a
instance Functor (StrF a) =
fmap f (Cons c x) = Cons c (f x)
fmap _ Nil = Nil
```

```
cata :: Functor f => Algebra f a -> Mu f -> a cata f = f . fmap (cata f) . outF
```

ката-morphism: Finally length

All needed information for making length.

```
instance Functor (StrF a) =
  phi :: Algebra StrF Int -- StrF Int -> Int
```

ката-morphism: extension to Trees

Once you get the trick, it is easy to extent to most Functor.

```
instance Functor TreeF where fmap f (Node e xs) = Node e (fmap f xs)

depth = cata phi where phi :: Algebra TreeF Int -- Int phi (Node x sons) = 1 + foldr max 0 sons
```

type Tree = Mu TreeF data TreeF x = Node Int [x]

Conclusion

Category Theory oriented Programming:

- Focus on the type and operators
- Extreme generalisation
- Better modularity
- Better control through properties of types