Category Theory &
Programming

by Yann Esposno

Plan

- General overview
- Definitions

- Applications

184

General Overview

Recent Math Field
1942-45, Samuel Eilenberg ¢ Saunders Mac Lane

Certainly one of the more abstract branches of math

- New math foundation
formalism abstraction, package entire theory*

- Bridge between disciplines
Physics, Quantum Physics, Topology, Logic, Computer Science™

“: When is one thing equal to some other thing?, Barry Mazur, 2007
Physics, Topology, Logic and Computation: A Rosetta Stone. John C. Baez, Mike Stay, 2009

From a Programmer perspective

I Category Theory is a new language/framework for Math

4784

Math Programming relation

Programming is doing Math

Not convinced?
Certainly a vocabulary problem.

One of the goal of Category Theory is to create a

homogeneous vocabulary between different disciplines.

5/84

Vocabulary

Math vocabulary used in this presentation:

Category, Morphism, Associativity, Preorder, Functor,
Endofunctor, Categorial property, Commutative
diagram, Isomorph, Initial, Dual, Monoid, Natural
transformation, Monad, Klesli arrows, kata-morphism,

6/84

Programmer Translation

Mathematician Programmer f
Morpr_usm Arr_ow . i "@
Monoid String-like
Preorder Acyclic graph
Isomorph The same
Natural transformation rearrangement funcii@

Funny Category LOLCat

7784

Plan

- General overview
- Definitions

- Applications

- Category
- Intuition
- Examples
- Functor

- Examples

884

Category

A way of representing things and ways to go between things.

A Category \(\mathca{C}\) is defined by:

- Objects \(\ob{C}),
- Morphisms \(\hom{C}),
- a Composition law ()

- obeying some Properties.

9/84

Category: Objects

=
@ ® ©

\(\ob{\mathcaC}}\) is a collection

10/84

Category: Morphisms

N C
wd A 3 idpg g ilel e
(BT ()) RN
e i R N
S 7 j%‘ \ \:’fij k

\(A\) and \(B\) objects of \(\C\)
\(\hom{A,B}\) is a collection of morphisms
\(f:A—B\) denote the fact \(f\) belongs to \(\hom{A,B})

\(\hom{\C}\) the collection of all morphisms of \(\C\)

11 /84

Category: Composition

Composition (-): associate to each couple \(f:A—B, g:B—C\) $$g.f:A\rightarrow C$$

} 7

gof

@ -©

12/84

Category laws: neutral element

for each object \(X\), there is an \(\id_X:X—X\),
such that for each \(f:A—B\):
1d A
€) didpof=f=foida

(4) -

&0 &

13 /84

Category laws: Associativity

Composition is associative:

(hog)of=ho(gof)

14 /84

Commutative diagrams

Two path with the same source and destination are equal.

ida

- B

A— A
ge. hog
f
p— " L¢
B

M(h-g)-f=h-(g-H ")

A
|f
B

\(id_B-f = f = f-id_A\)

15 /84

Question Time!

& ¢

P .

- French-only joke - 16/84

Can this be a category?

\(\ob{\C}\hom{\C}\) fixed, is there a valid -?

O @n R e
o—»o @ *—— »e———— e ° ®

e

17 /84

Can this be a category?

\(\ob{\C}\hom{\C}\) fixed, is there a valid -?

o | [
[G ° e S

YES

e

18 /84

Can this be a category?

\(\ob{\C}\hom{\C}\) fixed, is there a valid -?

O @n R e
o—»o @ *—— »e———— e ° ®

YES no candidate for \(g-f\)
NO

e

18 /84

Can this be a category?

\(\ob{\C}\hom{\C}\) fixed, is there a valid -?

O @n R e
o—»o @ *—— »e———— e ° ®

YES no candidate for \(g-f\)
NO

e

YES

20784

Can this be a category?

Can this be a category?

no candidate for \(f:C—B\)
NO

2 /84

Can this be a category?

no candidate for \(f:C—B\) \((h g) f=\id_B.f=f\)
NO \(h:(g-f)=h-\id_A=h)
but (hafy)

NO

23784

Categories Examples

- Basket of Cats - 24 /84

Category \(\Set\)

- \(\ob{\Set}\) are all the sets
-\(\hom{E,F}\) are all functions from \(E\) to \(F\)

- - is functions composition

2584

(0F:1(=Ts [o] gVAV(STETAY)

- \(\ob{\Set}\) are all the sets
-\(\hom{E,F}\) are all functions from \(E\) to \(F\)

- - is functions composition

- \(\ob{\Set}\) is a proper class ; not a set
-\(\hom{E,F}\) is a set

-\(\Set\) is then a locally small category

26 /84

Categories Everywhere?

-\(\Mon\): (monoids, monoid morphisms,-)
-\(\Wec\): (Vectorial spaces, linear functions,-)
-\(\Grp\): (groups, group morphisms,)
-\(\Rng\): (rings, ring morphisms,-)

- Any deductive system T: (theorems, proofs, proof
concatenation)

-\(\Hask\): (Haskell types, functions, [(.)|)

27784

Smaller Examples

Strings
- \(\ob{Str}\) is a singleton
- \(\hom{Strp\) each string

- . is concatenation |(++)

-MHru=u=u++ "

-[(U++ V) ++ W= U ++ (V ++ W)

28784

Finite Example?

Graph
-\(\ob{G}\) are vertices
-\(\hom{G}\) each path

- - Is path concatenation

-\(\OB{G}=XX, Y, Z\N),
-\(\hom{G}=\{€,a,B,y,aB.BY,...\}\)
- \aB-y=apyy)

29 /84

Number construction

Each Numbers as a whole category

0

"éd() !dl

30784

Degenerated Categories: Monoids

Each Monoid \((M,e,®): \ob{M}=\{ - \}\hom{M}=M,\circ = &\)
Only one object.

Examples:

- [(Integer,0,+)], (Integer,1,),

- [(Strings,™,++)|, for each [al, ([al.[],++)

31784

Degenerated Categories: Preorders \((P,<)\)

- \(\ob{P}={P}),
-\(\hom{x,y}=\{x=y\} & x=y\),
- \((y=2) \circ (x=y) = (x=2))

At most one morphism between two objects.

B<B A<A c=C D<D
) A<B P A<C) c<D)
©) - @) - @) -)

32784

Degenerated Categories: Discrete Categories

Any Set _
idp
Any set \(E: \ob{E}=E, \hom{x,y}=\{x\} & x=y\) @
Only identities ida
0
ido

33784

Categorical Properties

Any property which can be expressed in term of category, objects, morphism and
composition.

- Dual: \(\DV) is \(\C\) with reversed morphisms.

- Initial: \(Z\inM\ob{\C}\) s.t. \(vYe\ob{\C}, \¥\hom{Z,Y}=1\)
Unique ("up to isormophism")

- Terminal: \(TNin\ob{\C}) s.t. \(T\) is initial in the dual of \(\C\)
- Functor: structure preserving mapping between categories

34784

Isomorph

isomorphism: \(f:A—B\) which can be "undone" i.e.
\(3g:B—A\), \(g-f=id_A\) & \(f-g=id_B))
in this case, \(A\) & \(B\) are isomorphic.

A=B means A and B are essentially the same.
In Category Theory, = is in fact mostly =.
For example in commutative diagrams.

35 /84

Functor

A functor is a mapping between two categories. Let \(\C\) and \(\D\) be two categories. A

functor \(\F\) from \(\C\) to \(\D\):

- Associate objects: NA\IN\ob{\CH)] to NAF(A)NIN\ob{\D})|
- Associate morphisms: [\(f:A\o BY)] to f\(\E(f) 1 \E(A) Mo \F(B)Y)] such that
\(\F (VRNEXIN) = \)NaNWphantor{ud} 4 (VN Wphantom i) XU\
(\wphantom{id})} V),
-\(\F ORG-NIN)= YROEOMGIN) WOSeWAE MNP V)]

3684

Functor Example (ob — ob)

¢ D =F(C)
id 4 ’,»"'—‘—ial—;—h“'"'\ idx
Q) A
v__/" ----- s
ido idy
A

37784

Functor Example (hom — hom)

38784

Functor Example

¢ D =F(C)
id A id B 1d 3
B ®

39784

Endofunctors

An endofunctor for \(\C\) is a functor \(F\C—\C\).

@

-(I_-]l ‘;(EB
v\‘_‘_;_/

=

20 !

@D

id idp

\M @
)
©

40 /84

Category of Categories

Categories and functors form a category: \
(\Cat\)

-\(\ob{\Cat}\) are categories
- \(\hom{\Cat}\) are functors

- . is functor composition

L

41784

Plan

- Why?
- What?

- \(\Hask\) category
- HOW', - Functors
- Monads

- kata-morphisms

42784

Hask

Category \(\Hask\):
-\(\ob{\Hask} = \) Haskell types m—
-\(\hom{\Hask} = \) Haskell functions @ tail
- . = |(.)| Haskell function composition =Safi
@pbo
Forget glitches because of jundefined|.
oy

43784

Haskell Kinds

In Haskell some types can take type variable(s). Typically: .

Types have kinds; The kind is to type what type is to function. Kind are the types for

types (so meta).

Int, Char :: *

[], Maybe :: * > *

(e

[Int], Maybe Char, Maybe [Inf] :: *

44 J84

Haskell Types

Sometimes, the type determine a lot about the function:

fst :: (a,b) -> a -- Only one choice

snd :: (a,b) -= b -- Only one choice
f::a->[a] -- Many choices

-- Possibilities: f x=[], or [x], or [x,x] or [X,...,x]

? :: [a] = [a] -- Many choices

-- can only rearrange: duplicate/remove/reorder elements
-- for example: the type of addOne isn't fa] > [a]

addOne | = map (+17) |

-- The (+1) force ‘a'to be a Num.

% Theorems for free!, Philip Wadler, 1989

45 [84

Haskell Functor vs \(\Hask\) Functor

A Haskell Functor is a type which belong to the type class : thus

instantiate [fmap :: (a ->b) > (F a -> F b)|.

F|: \(\ob{\Hask}—\ob{\Hask}\)
& [fmapl: \(\hom{\Hask}—\hom{\Hask})

The couple [(F,fmap)| is a \(\Hask\)'s functor if for any [x :: F al:
:

- [fmap (f.g) x= (fmap f . fmap g) x|

46 /84

Haskell Functors Example: Maybe

data Maybe a = Just a | Nothing

instance Functor Maybe where
fmap :: (a > b) > (Maybe a -> Maybe b)
fmap f (Just a) = Just (f a)
fmap f Nothing = Nothing

fmap (+1) (Just 1) == Just 2
fmap (+1) Nothing == Nothing
fmap head (Just [1,2,3]) == Just 1

47 J84

Haskell Functors Example: List

instance Functor ([]) where
fmap :: (a -> b) -> [a] -> [b]
fmap = map

fmap (+1) [1,2,3] =[2,3,4]
fmap (+1) []
fmap head [[1,2,3],[4, 5 6]] =[1,4]

48 J84

Haskell Functors for the programmer

is a type class used for types that can be mapped over.

- Containers: , Trees, Map, HashMap...

- "Feature Type":

- [Maybe a: help to handle absence of [al.

Ex: safeDiv x 0 = Nothing|

- |[Either String a|: help to handle errors

Ex: reportDiv x 0 = Left "Division by 0!"|

48 /84

Haskell Functor intuition

Put normal function inside a container. Ex: list, trees...

— e e e

50784

Haskell Functor properties

Haskell Functors are:

- endofunctors ; \(F\C—\C\) here \(\C = \Hask\),
- a couple (Object,Morphism) in \(\Hask\).

51784

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell
types is fractal:

FF

fmap sqrt
sqrt
@ = @ @ e

@ length fmap length

e b@b

b

52784

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell
types is fractal:

t fmap sqrt
L
id ,-—" tail 4"“-_‘ frap id fmap tail
- ~

@ length @ fmap length
% = G

e e i = 53 /84

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions. Haskell

types is fractal:

F
(FF
= ~fgap sqrt
_---' tail = -5‘@ Q Irap tail

fmap length
iy

54 /84

"Non Haskell" Hask's Functors

A simple basic example is the \(id_\Hask\) functor. It simply cannot be expressed as a

couple (F|fmap)) where
i

- [fmap :: (a > b) -> (F a) -> (F b),

Another example:

- F(T)=Int
- F(f)s_->0

55 /84

Also Functor inside \(\Hask\)

\(\mathtt{[a]}e\ob{\Hask}\) but is also a category. Idem for [Int].

is a Functor from the category |[a]| to the cateogry |Int:

- \(\ob{\mathtt{[a]}=\{ - \}\) - \(\ob{\mathtt{Int}}=\{ - \\)
- \(\nom{\mathtt{[a]}}=\mathtt{[a]}\) = - \(\hom{\mathtt{Int}}=\mathtt{Int}\)
- \(:=\mathtt{(++)}\) - \(:=\mathtt{(+)}\)

- length 1=

- comp: [length (I ++ I') = (length I) + (length I')|

56 /84

Category of \(\Hask\) Endofunctors

5784

Category of Functors

IF\(NCY) is small \A\hom{\C}\) is a set). All functars from \(\C\) to some category \(\D\)
form the category \(\mathrm{Func}(\C,\D)\).

-\(\ob{\mathrm{Func}(\C,\D)}\): Functors \(F\C—\D\)
- \(A\hom{\mathrm{Func}(\C,\D)}\): natural transformations

- .2 Functor composition

\(\mathrm{Func}(\C,\C)\) is the category of endofunctors of \(\C\).

5884

Natural Transformations

Let \(F\) and \(G\) be two functors from \(\C\) to \(\D\).

A natural transformation: familly n ; \(n_X\in\hom{\D}\) for
\(X\in\ob{\C}\) s.t.

ex: between Haskell functors;

Rearragement functions only.

i

X Ll

nx Ny

Gf

GX——— QY

59/84

Natural Transformation Examples (1/4)

data Tree a = Empty | Node a [Tree a]
toTree :: [a] -> Tree a

toTree [] = Empty

toTree (x:xs) = Node x [toTree xs]

is a natural transformation. It is also a morphism from [[]| to in the Category

of \(\Hask\) endofunctors.

fmapy) £ toTree
1 o
@
toTree toTree
¥ fmaprree £

Tree a Tree b

=

Tree)

60 /84

Natural Transformation Examples (2/4)

data Tree a = Empty | Node a [Tree a]

toList :: Tree a -> [a]
toList Empty =[]

toList (Node x 1) = [x] ++ concat (map toList I)

is a natural transformation. It is also a morphism from to [[] in the Category

of \(\Hask\) endofunctors.

fmapy) £)
[a] —————— = [b]
A

toTree||tolist tolist || toTree

M fmaprree £
Treea ——————————— Treeb

toTree
—— e

L A,
Gl

toList . toTree = id & toTree . toList = id
therefore [] & Tree are isomorph.

61 /84

Natural Transformation Examples (3/4)

toMaybe :: [a] -> Maybe a
toMaybe [] = Nothing
toMaybe (x:xs) = Just x

toMaybe)| is a natural transformation. It is also a morphism from [[]| to in the

Category of \(\Hask\) endofunctors.

fmap £ toMaybe

Il —
-
@
toMaybe toMaybe
Imapmaybe T

Maybea ——————» Maybe b

al

— m
Maybe!
N

6284

Natural Transformation Examples (4/4)

mTolist :: Maybe a -> [a]
mToList Nothing = []
mToList Just x = [x]

toMaybel is a natural transformation. It is also a morphism from [[]| to in the

Category of \(\Hask\) endofunctors.

fmap) £ toMaybe
ey e

] ™ — T

¥ mTolList —
mToList mToList

There is no isomorphism.
fmapyayne £ i 5
Maybea — . Maybe b Hint: Bool lists longer than 1.

63 /84

Composition problem

The Problem; example with lists:

fx=[x] :rf1—[1] = (f.H1=[1]]x
g X = [x+1] gl=[2] ég%H:E ROR [2]+1 X
hx—[x+1x3]:'h1—[2 3] = (h.h) 1 = ERROR [2,3]+1 X

The same problem with most functions and functor [F|.

64 /84

Composition Fixable?

How to fix that? We want to construct an operator which is able to compose:

fia->Fb/&lg:b->Fd

More specifically we want to create an operator © of type

[©:(b->Fc)->(@a-=>Fb)->(a->Fc)

Note: if [F] =1, © =[().

65 /84

Fix Composition (1/2)

Goal, find:|@ :: (b ->F ¢) -> (a->F b) -> (a->F c)|
fia->Fbl[g:b->Fc

-[gOf)x 222

- First apply [f to [x| =

- Then how to apply @ properly to an element of type ?

66 /84

Fix Composition (2/2)

Goal, find:|@ 1 (b ->F ¢) -> (a->Fb) ->(a->F ¢
= , IR

- Use [fmap :: (t >u) -> (F t -> F u)|!

; (t=0), [u=F ¢

-|[(fmap g) (fx) :: F (F c)\ it almost WORKS!

-|[(fmap g) :: Fb->F (

s FFe) =P

- (g © f) x = join ((fmap g) (f x))| @
© is the Kleisli composition; in Haskell: |<=<] (in [Control.Monad]).

67 /84

Necessary laws

For © to work like composition, we need join to hold the following properties:

- ljoin (join (F (F (F a))))=join (F (join (F (F a))))

- abusing notations denoting by ©; this is equivalent to
(FoF)oF=Fo(FoF)

- There exists s.t.

noF=F=Fon

68 /84

Klesli composition

Now the composition works as expected. In Haskell © is |<=<] in Control.Monad|.

lg <=<f =\ ->join ((fmap g) (f x))

fx=[x] =f1=[1] =(f<=<f)1=[1
gx=[x+1] =g1=[2] = (g<=<g)1

[1] v
hx:[x+1,x*3]=>h1=[2,3]=>(h<=g<;h) [=

e v
1=[3,6,49] v

69 /84

We reinvented Monads!

A monad is a triplet |(M,®,n)| where

-\(M\) an Endofunctor (to type [a] associate [M a))
- \(@:MxM—M\) a nat. trans. (i.e. [0::M (M a) = M a ; [join))

-\(n:1=M\) a nat. trans. (\(I\) identity functor ; n::a = M al)

Satisfying

(Mo (Mo M)=(Mo M) o M)
-\neM=M=Mon\

70784

Compare with Monoid

A Monoid is a triplet \((E, - ,e)\) s.t.

-\(E\) a set
-\(-:ExE—EN)
-\e:1—EY

Satisfying

-\(X-(y-2) =(x-y)-z, ¥X,y,zeE\)

-\(e:x=x=x:e, vxeE\)

71784

Monads are just Monoids

I A Monad is just a monoid in the category of endofunctors, what's the problem?

The real sentence was:

All told, a monad in X is just a monoid in the category of endofunctors of X, with
product x replaced by composition of endofunctors and unit set by the identity

endofunctor.

72784

Example: List

- an Endofunctor

- \(0:MxM—M\) a nat. trans. (join :: M (M a) > M a)

-\(n:lI—=M\) a nat. trans.

-- In Haskell © is "join" in "Control.Monad"
join :: [[a]] > [a]
join = concat

-- In Haskell the "return” function (unfortunate name)
n:a-=>[al
nx=[x]

73784

Example: List (law verification)

Example: is a functor (join| is ©)

\Mo (Mo M)=(Mo M) o M)
-\meM=M=Mon\

join [join [[x,y.-.-.2]]] = join [[x.y,-...Z]]
B = join (join [[[X......211])
join (n [x]) = [x] =join [x]

Therefore |([],join,n)|is a monad.

74784

Monads useful?

A LOT of monad tutorial on the net. Just one example; the State Monad

[DrawScene| to [State Screen DrawScene] ; still pure.

main = drawlmage (width.height)

drawlmage :: Screen -> DrawScene
drawlmage screen =
drawPaint p screen
drawCircle ¢ screen
drawRectangle r screen

drawPoint point screen = ...
drawCircle circle screen = ...

drawRectangle rectangle screen = ...

main = do
put {Screen 1024 768)
drawlmage

drawlmage :: State Screen DrawScene
drawlmage = do

drawPoint p

drawCircle ¢

drawRectangle r

drawPoint :: Point -> State Screen DrawScene
drawPoint p = do
Screen width height <- get

fold

76 /84

Kata-morphism

77784

kata-morphism: fold generalization

type of the "accumulator":
[fold :: (acc -> a -> acc) > acc -> [a] -> acc]|

Idea: put the accumulated value inside the type.

-- Equivalent to fold (+1) O "cata"

(Cons ‘c' (Cons 'a' (Cons 't' (Cons 'a' Nil))))
(Cons'' c (Cons 'a' (Cons 't' Cons a'[0)))
(Cons 'c' (Cons 'a' Cons 't [1]

(Cons 'c' Cons a'l2

iCons c'3

But where are all the informations? and [0]? ..

kKata-morphism: Missing Information

Where is the missing information?

- Functor operator

- Algebra representing the and also knowing the @

First example, make on

79784

Kata-morphism: Type work

data StrF a = Cons Char a | Nil
data Str = StrF Str

-- generalize the construction of Str to other datatype
u :: type fixed point

data Mu f = InF { outF :: f (Mu f) }
data Str = Mu StrF

-- Example
foo= InF{ouiF Cons 'f'
(InF { outF = Cons '0'
(InF { outF = Cons '0'
(InF { outF = Nil)11}

80 /84

kKara-morphism: missing information retrieved

type Algebrafa=fa->a
instance Functor (StrF a) =
fmap f (Cons ¢ x) = Cons c (f x)
fmap _ Nil = Nil

cata :: Functor f => Algebrafa ->Muf->a
cataf=1f.fmap (cataf). outkF

81784

kata-morphism: Finally length

All needed information for making length.

instance Functor (StrF a) =
fmap f (Cons ¢ x) = Cons c (f x)
fmap _ Nil = Nil

length' :: Str -> Int

length' = cata phi where
phi :: Algebra StrF Int -- StrF Int -> Int
phi (Consab)=1+b
phi Nil = 0

main = do
| <- length'$ stringToStr "Toto"

82784

KaTta-morphism: extension to Trees

Once you get the trick, it is easy to extent to most Functor.

type Tree = Mu TreeF
ata TreeF x = Node Int [x]

instance Functor TreeF where
fmap f (Node e xs) = Node e (fmap f xs)

depth = cata phi where
phi :: Algebra TreeF Int -- TreeF Int -> Int
phi (Node x sons) = 1 + foldr max 0 sons

83784

Conclusion

Category Theory oriented Programming:

- Focus on the type and operators
- Extreme generalisation
- Better modularity

- Better control through properties of types

84 /84

