revert to zsh version(s) back

This commit is contained in:
Yann Esposito (Yogsototh) 2012-12-06 19:12:58 +01:00
parent f5fc57d703
commit 53f10e967c
6 changed files with 48 additions and 30 deletions

View file

@ -92,6 +92,7 @@
<li class="yellow">General overview</li>
<li>Math <span class="and">&amp;</span> Abstraction</li>
<li>Programming <span class="and">&amp;</span> Abstraction</li>
<li>Categories <span class="and">&amp;</span> Abstraction</li>
</ul>
</li>
<li>What?</li>
@ -316,7 +317,7 @@ Theory=(Axioms,<span style="visibility:hidden">Strings</span>Rules,<span style="
</li><li> Mostly static constructions like pipes.
</li><li> All pipes can be plugged ⇒ all error at runtime
<ul><li> (+ 37 "foo")
</li><li> Y = λf.(λx.f (x x)) (λx.f (<span class="yellow">x x</span>))
</li><li> Y = λf.(λx.f (x x)) (λx.f (x x))
</li><li> Y g = g (Y g)
</li></ul>
</li></ul>
@ -390,11 +391,19 @@ type Product = Product {getProduct :: a} -- Just a named box
</section>
<section class="slide">
<h2>Type Theory <span class="and">&amp;</span> Categories</h2>
<table><tr><td>typed λ-calculus </td><td> cartesian closed categories
</td></tr><tr><td>untyped λ-calculus </td><td> C-monoids (subclass of categories)
</td></tr><tr><td>Martin-Löf type theories </td><td> locally cartesian closed categories
</td></tr><tr><td></table>
<h2>Type Theory ⇒ Categories</h2>
<ul>
<li>Type theory helped to remove paradoxes in Set Theory.</li>
<li>Prevent relations between different kind of objects.</li>
<li>Used in computer science</li>
</ul>
<ul>
<li>typed λ-calculus ⇒ cartesian closed categories</li>
<li>untyped λ-calculus ⇒ C-monoids (subclass of categories)</li>
<li>Martin-Löf type theories ⇒ locally cartesian closed categories</li>
</ul>
</section>
<section class="slide">
<h2>Plan</h2>
@ -886,16 +895,16 @@ Haskell types is fractal:</p>
</section>
<section class="slide">
<h2 id="monads-are-just-monoids-14">Monads are just monoids (1/4)</h2>
<p>A monoid is a triplet \((M,⊙,e)\) s.t.</p>
<p>A monoid is a triplet \((E,∙,e)\) s.t.</p>
<ul>
<li>\(M\) a set</li>
<li>\(⊙:E×E→M\)</li>
<li>\(e:1→M\)</li>
<li>\(E\) a set</li>
<li>\(∙:E×E→E\)</li>
<li>\(e:1→E\)</li>
</ul>
<p>Satisfying</p>
<ul>
<li>\(x⊙(y⊙z) = (x⊙y)⊙z, ∀x,y,z∈M\)</li>
<li>\(e⊙x = x = x⊙e, ∀x∈M\)</li>
<li>\(x∙(y∙z) = (x∙y)∙z, ∀x,y,z∈E\)</li>
<li>\(e∙x = x = x∙e, ∀x∈E\)</li>
</ul>
</section>
<section class="slide">

View file

@ -5,6 +5,7 @@
<li class="yellow">General overview</li>
<li>Math &amp; Abstraction</li>
<li>Programming &amp; Abstraction</li>
<li>Categories &amp; Abstraction</li>
</ul>
</li>
<li>What?</li>

View file

@ -4,7 +4,7 @@
</li><li> Mostly static constructions like pipes.
</li><li> All pipes can be plugged ⇒ all error at runtime
<ul><li> (+ 37 "foo")
</li><li> Y = λf.(λx.f (x x)) (λx.f (<span class="yellow">x x</span>))
</li><li> Y = λf.(λx.f (x x)) (λx.f (x x))
</li><li> Y g = g (Y g)
</li></ul>
</li></ul>

View file

@ -1,5 +1,13 @@
<h2>Type Theory &amp; Categories</h2>
<table><tr><td>typed λ-calculus </td><td> cartesian closed categories
</td></tr><tr><td>untyped λ-calculus </td><td> C-monoids (subclass of categories)
</td></tr><tr><td>Martin-Löf type theories </td><td> locally cartesian closed categories
</td></tr><tr><td></table>
<h2>Type Theory ⇒ Categories</h2>
<ul>
<li>Type theory helped to remove paradoxes in Set Theory.</li>
<li>Prevent relations between different kind of objects.</li>
<li>Used in computer science</li>
</ul>
<ul>
<li>typed λ-calculus ⇒ cartesian closed categories</li>
<li>untyped λ-calculus ⇒ C-monoids (subclass of categories)</li>
<li>Martin-Löf type theories ⇒ locally cartesian closed categories</li>
</ul>

View file

@ -1,12 +1,12 @@
<h2 id="monads-are-just-monoids-14">Monads are just monoids (1/4)</h2>
<p>A monoid is a triplet \((M,⊙,e)\) s.t.</p>
<p>A monoid is a triplet \((E,∙,e)\) s.t.</p>
<ul>
<li>\(M\) a set</li>
<li>\(⊙:E×E→M\)</li>
<li>\(e:1→M\)</li>
<li>\(E\) a set</li>
<li>\(∙:E×E→E\)</li>
<li>\(e:1→E\)</li>
</ul>
<p>Satisfying</p>
<ul>
<li>\(x⊙(y⊙z) = (x⊙y)⊙z, ∀x,y,z∈M\)</li>
<li>\(e⊙x = x = x⊙e, ∀x∈M\)</li>
<li>\(x∙(y∙z) = (x∙y)∙z, ∀x,y,z∈E\)</li>
<li>\(e∙x = x = x∙e, ∀x∈E\)</li>
</ul>

View file

@ -1,13 +1,13 @@
Monads are just monoids (1/4)
-----------------------------
A monoid is a triplet \\((M,⊙,e)\\) s.t.
A monoid is a triplet \\((E,∙,e)\\) s.t.
- \\(M\\) a set
- \\(⊙:E×E→M\\)
- \\(e:1→M\\)
- \\(E\\) a set
- \\(∙:E×E→E\\)
- \\(e:1→E\\)
Satisfying
- \\(x⊙(y⊙z) = (x⊙y)⊙z, ∀x,y,z∈M\\)
- \\(e⊙x = x = x⊙e, ∀x∈M\\)
- \\(x∙(y∙z) = (x∙y)∙z, ∀x,y,z∈E\\)
- \\(e∙x = x = x∙e, ∀x∈E\\)