scratch/multi/blog/Haskell-OpenGL-Mandelbrot.md

1655 lines
50 KiB
Markdown
Raw Normal View History

2012-06-01 13:24:58 +00:00
-----
isHidden: false
menupriority: 1
kind: article
created_at: 2012-04-30T19:17:53+02:00
2012-06-15 10:29:31 +00:00
en: title: Haskell Progressive Example
2012-06-01 13:24:58 +00:00
en: subtitle: An OpenGL 3D extension of the Mandelbrot set
2012-06-15 10:29:31 +00:00
fr: title: Un example progressif avec Haskell
2012-06-01 13:24:58 +00:00
fr: subtitle: Une extension de l'ensemble de Mandelbrot en 3D et en OpenGL
author_name: Yann Esposito
author_uri: yannesposito.com
tags:
- Haskell
- programming
- functional
- tutorial
2012-06-15 10:29:31 +00:00
- fractal
2012-06-01 13:24:58 +00:00
-----
blogimage("BenoitBMandelbrot.jpg","The B in Benoît B. Mandelbrot stand for Benoît B. Mandelbrot")
2012-06-01 13:24:58 +00:00
begindiv(intro)
2012-06-15 10:29:31 +00:00
en: %tldr A progressive Haskell example.
en: A Mandelbrot set extended in 3D, rendered using OpenGL and coded with Haskell.
en: In the end the code will be very clean.
en: The meaningful stuff will be in a pure functional bubble.
en: The display details will be put in an external module playing the role of a wrapper.
en: You'll can use this kind of functional organization even in imperative language.
fr: %tlal Un exemple progressif d'utilisation d'Haskell.
2012-06-15 10:29:31 +00:00
fr: Vous pourrez voir un ensemble de Mandelbrot étendu à la troisième dimension.
fr: De plus le code sera très propre.
fr: Les détails de rendu sont séparés dans un module externe.
fr: Le code descriptif intéressant est concentré dans un environnement pur et fonctionnel.
fr: Vous pouvez vous inspirer de ce code utilisant le paradigme fonctional dans tous les languages.
2012-06-01 13:24:58 +00:00
> <center><hr style="width:30%;float:left;border-color:#CCCCD0;margin-top:1em"/><span class="sc"><b>Table of Content</b></span><hr style="width:30%;float:right;border-color:#CCCCD0;margin-top:1em"/></center>
>
> * This will be replaced by the ToC
> {:toc}
>
enddiv
## Introduction
2012-06-15 10:29:31 +00:00
In my
[preceding article](/Scratch/en/blog/Haskell-the-Hard-Way/) I introduced Haskell.
2012-06-01 13:24:58 +00:00
2012-06-15 10:29:31 +00:00
This article go further.
It will show how to use functional programming with interactive programs.
But more than that, it will show how to organize your code in a functional way.
This article is more about functional paradigm than functional language.
The code organization can be used in most imperative language.
2012-06-15 10:29:31 +00:00
As Haskell is designed for functional paradigm, it is easier to use in this context.
In reality, the firsts sections will use an imperative paradigm.
As you can use functional paradigm in imperative language,
you can also use imperative paradigm in functional languages.
2012-06-01 13:24:58 +00:00
2012-06-15 10:29:31 +00:00
This article is about creating a useful and clean program.
It can interact with the user in real time.
It uses OpenGL, a library with imperative programming foundations.
But the final code will be quite clean.
Most of the code will remain in the pure part (no `IO`).
2012-06-01 13:24:58 +00:00
I believe the main audience for this article are:
- Haskell programmer looking for an OpengGL tutorial.
- People interested in program organization (programming language agnostic).
- Fractal lovers and in particular 3D fractal.
- Game programmers (any language)
2012-06-15 10:29:31 +00:00
I had in mind for some time now to make a Mandelbrot set explorer.
I had already written a [command line Mandelbrot set generator in Haskell](http://github.com/yogsototh/mandelbrot.git).
This utility is highly parallel; it uses the `repa` package[^001].
2012-06-15 10:29:31 +00:00
[^001]: Unfortunately, I couldn't make this program to work on my Mac. More precisely, I couldn't make the [DevIL](http://openil.sourceforge.net/) library work on Mac to output the image. Yes I have done a `brew install libdevil`. But even a minimal program who simply write some `jpg` didn't worked. I tried both with `Haskell` and `C`.
2012-06-01 13:24:58 +00:00
This time, we will display the Mandelbrot set extended in 3D using OpenGL and Haskell.
You will be able to move it using your keyboard.
This object is a Mandelbrot set in the plan (z=0),
and something nice to see in 3D.
2012-06-01 13:24:58 +00:00
2012-06-15 10:29:31 +00:00
Here are some screenshots of the result:
2012-06-01 13:24:58 +00:00
2012-06-14 16:04:16 +00:00
blogfigure("GoldenMandelbulb.png","The entire Mandelbulb")
blogfigure("3DMandelbulbDetail.png","A Mandelbulb detail")
blogfigure("3DMandelbulbDetail2.png","Another detail of the Mandelbulb")
2012-06-01 13:24:58 +00:00
2012-06-15 10:29:31 +00:00
And you can see the intermediate steps to reach this goal:
2012-06-01 13:24:58 +00:00
blogimage("HGL_Plan.png","The parts of the article")
2012-06-14 16:04:16 +00:00
From the 2nd section to the 4th it will be _dirtier_ and _dirtier_.
2012-06-15 10:29:31 +00:00
We start cleaning the code at the 5th section.
<hr/><a href="code/01_Introduction/hglmandel.lhs" class="cut">Download the source code of this section → 01_Introduction/<strong>hglmandel.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## First version
We can consider two parts.
The first being mostly some boilerplate[^011].
And the second part more focused on OpenGL and content.
2012-06-01 13:24:58 +00:00
[^011]: Generally in Haskell you need to declare a lot of import lines.
2012-06-01 13:24:58 +00:00
This is something I find annoying.
In particular, it should be possible to create a special file, Import.hs
which make all the necessary import for you, as you generally need them all.
I understand why this is cleaner to force the programmer not to do so,
but, each time I do a copy/paste, I feel something is wrong.
I believe this concern can be generalized to the lack of namespace in Haskell.
### Let's play the song of our people
<div class="codehighlight">
<code class="haskell">
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Data.IORef
</code>
</div>
For efficiency reason, I won't use the default Haskell `Complex` data type.
<div class="codehighlight">
<code class="haskell">
newtype Complex = C (Float,Float) deriving (Show,Eq)
</code>
</div>
<div class="codehighlight">
<code class="haskell">
instance Num Complex where
fromInteger n = C (fromIntegral n,0.0)
C (x,y) * C (z,t) = C (z*x - y*t, y*z + x*t)
C (x,y) + C (z,t) = C (x+z, y+t)
abs (C (x,y)) = C (sqrt (x*x + y*y),0.0)
signum (C (x,y)) = C (signum x , 0.0)
</code>
</div>
We declare some useful functions for manipulating complex numbers:
<div class="codehighlight">
<code class="haskell">
complex :: Float -> Float -> Complex
complex x y = C (x,y)
real :: Complex -> Float
real (C (x,y)) = x
im :: Complex -> Float
im (C (x,y)) = y
magnitude :: Complex -> Float
magnitude = real.abs
</code>
</div>
### Let us start
We start by giving the main architecture of our program:
<div class="codehighlight">
<code class="haskell">
main :: IO ()
main = do
-- GLUT need to be initialized
(progname,_) <- getArgsAndInitialize
-- We will use the double buffered mode (GL constraint)
initialDisplayMode $= [DoubleBuffered]
-- We create a window with some title
createWindow "Mandelbrot Set with Haskell and OpenGL"
-- Each time we will need to update the display
-- we will call the function 'display'
displayCallback $= display
-- We enter the main loop
mainLoop
</code>
</div>
Mainly, we initialize our OpenGL application.
We declared that the function `display` will be used to render the graphics:
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
display = do
clear [ColorBuffer] -- make the window black
loadIdentity -- reset any transformation
preservingMatrix drawMandelbrot
swapBuffers -- refresh screen
</code>
</div>
Also here, there is only one interesting line;
the draw will occur in the function `drawMandelbrot`.
2012-06-01 13:24:58 +00:00
This function will provide a list of draw actions.
Remember that OpenGL is imperative by design.
Then, one of the consequence is you must write the actions in the right order.
2012-06-01 13:24:58 +00:00
No easy parallel drawing here.
Here is the function which will render something on the screen:
<div class="codehighlight">
<code class="haskell">
drawMandelbrot =
-- We will print Points (not triangles for example)
renderPrimitive Points $ do
mapM_ drawColoredPoint allPoints
where
drawColoredPoint (x,y,c) = do
color c -- set the current color to c
-- then draw the point at position (x,y,0)
-- remember we're in 3D
vertex $ Vertex3 x y 0
</code>
</div>
The `mapM_` function is mainly the same as map but inside a monadic context.
More precisely, this can be transformed as a list of actions where the order is important:
~~~
drawMandelbrot =
renderPrimitive Points $ do
color color1
vertex $ Vertex3 x1 y1 0
...
color colorN
vertex $ Vertex3 xN yN 0
~~~
We also need some kind of global variables.
In fact, global variable are a proof of a design problem.
We will get rid of them later.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
width = 320 :: GLfloat
height = 320 :: GLfloat
</code>
</div>
And of course our list of colored points.
In OpenGL the default coordinate are from -1 to 1.
<div class="codehighlight">
<code class="haskell">
allPoints :: [(GLfloat,GLfloat,Color3 GLfloat)]
allPoints = [ (x/width,y/height,colorFromValue $ mandel x y) |
x <- [-width..width],
y <- [-height..height]]
</code>
</div>
We need a function which transform an integer value to some color:
<div class="codehighlight">
<code class="haskell">
colorFromValue n =
let
t :: Int -> GLfloat
t i = 0.5 + 0.5*cos( fromIntegral i / 10 )
in
Color3 (t n) (t (n+5)) (t (n+10))
</code>
</div>
And now the `mandel` function.
2012-06-01 13:24:58 +00:00
Given two coordinates in pixels, it returns some integer value:
<div class="codehighlight">
<code class="haskell">
mandel x y =
let r = 2.0 * x / width
i = 2.0 * y / height
in
f (complex r i) 0 64
</code>
</div>
It uses the main Mandelbrot function for each complex \\(c\\).
2012-06-14 16:04:16 +00:00
The Mandelbrot set is the set of complex number \\(c\\) such that the following sequence does not escape to infinity.
2012-06-01 13:24:58 +00:00
Let us define \\(f_c: \mathbb{C} \to \mathbb{C}\\)
$$ f_c(z) = z^2 + c $$
The sequence is:
$$ 0 \rightarrow f_c(0) \rightarrow f_c(f_c(0)) \rightarrow \cdots \rightarrow f^n_c(0) \rightarrow \cdots $$
Of course, instead of trying to test the real limit, we just make a test after a finite number of occurrences.
<div class="codehighlight">
<code class="haskell">
f :: Complex -> Complex -> Int -> Int
f c z 0 = 0
f c z n = if (magnitude z > 2 )
then n
else f c ((z*z)+c) (n-1)
</code>
</div>
Well, if you download this file (look at the bottom of this section), compile it and run it this is the result:
2012-06-01 13:24:58 +00:00
blogimage("hglmandel_v01.png","The mandelbrot set version 1")
A first very interesting property of this program is that the computation for all the points is done only once.
It is a bit long before the first image appears, but if you resize the window, it updates instantaneously.
2012-06-01 13:24:58 +00:00
This property is a direct consequence of purity.
If you look closely, you see that `allPoints` is a pure list.
Therefore, calling `allPoints` will always render the same result and Haskell is clever enough to use this property.
2012-06-01 13:24:58 +00:00
While Haskell doesn't garbage collect `allPoints` the result is reused for free.
We didn't specified this value should be saved for later use.
It is saved for us.
See what occurs if we make the window bigger:
blogimage("hglmandel_v01_too_wide.png","The mandelbrot too wide, black lines and columns")
We see some black lines because we drawn less point than there is on the surface.
2012-06-01 13:24:58 +00:00
We can repair this by drawing little squares instead of just points.
But, instead we will do something a bit different and unusual.
<a href="code/01_Introduction/hglmandel.lhs" class="cut">Download the source code of this section → 01_Introduction/<strong>hglmandel.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
<hr/><a href="code/02_Edges/HGLMandelEdge.lhs" class="cut">Download the source code of this section → 02_Edges/<strong>HGLMandelEdge.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## Only the edges
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Data.IORef
newtype Complex = C (Float,Float) deriving (Show,Eq)
instance Num Complex where
fromInteger n = C (fromIntegral n,0.0)
C (x,y) * C (z,t) = C (z*x - y*t, y*z + x*t)
C (x,y) + C (z,t) = C (x+z, y+t)
abs (C (x,y)) = C (sqrt (x*x + y*y),0.0)
signum (C (x,y)) = C (signum x , 0.0)
complex :: Float -> Float -> Complex
complex x y = C (x,y)
real :: Complex -> Float
real (C (x,y)) = x
im :: Complex -> Float
im (C (x,y)) = y
magnitude :: Complex -> Float
magnitude = real.abs
main :: IO ()
main = do
-- GLUT need to be initialized
(progname,_) <- getArgsAndInitialize
-- We will use the double buffered mode (GL constraint)
initialDisplayMode $= [DoubleBuffered]
-- We create a window with some title
createWindow "Mandelbrot Set with Haskell and OpenGL"
-- Each time we will need to update the display
-- we will call the function 'display'
displayCallback $= display
-- We enter the main loop
mainLoop
display = do
-- set the background color (dark solarized theme)
clearColor $= Color4 0 0.1686 0.2117 1
clear [ColorBuffer] -- make the window black
loadIdentity -- reset any transformation
preservingMatrix drawMandelbrot
swapBuffers -- refresh screen
width = 320 :: GLfloat
height = 320 :: GLfloat
</code>
</div>
</div>
This time, instead of drawing all points, I'll simply want to draw the edges of the Mandelbrot set.
The method I use is a rough approximation.
I consider the Mandelbrot set to be almost convex.
The result will be good enough.
2012-06-14 16:04:16 +00:00
We change slightly the `drawMandelbrot` function.
2012-06-01 13:24:58 +00:00
We replace the `Points` by `LineLoop`
<div class="codehighlight">
<code class="haskell">
drawMandelbrot =
-- We will print Points (not triangles for example)
renderPrimitive LineLoop $ do
mapM_ drawColoredPoint allPoints
where
drawColoredPoint (x,y,c) = do
color c -- set the current color to c
-- then draw the point at position (x,y,0)
-- remember we're in 3D
vertex $ Vertex3 x y 0
</code>
</div>
And now, we should change our list of points.
Instead of drawing every point of the visible surface,
we will choose only point on the surface.
<div class="codehighlight">
<code class="haskell">
allPoints = positivePoints ++
map (\(x,y,c) -> (x,-y,c)) (reverse positivePoints)
</code>
</div>
We only need to compute the positive point.
2012-06-14 16:04:16 +00:00
The Mandelbrot set is symmetric relatively to the abscisse axis.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
positivePoints :: [(GLfloat,GLfloat,Color3 GLfloat)]
positivePoints = do
x <- [-width..width]
2012-06-14 16:04:16 +00:00
let y = maxZeroIndex (mandel x) 0 height (log2 height)
if y < 1 -- We don't draw point in the absciss
then []
else return (x/width,y/height,colorFromValue $ mandel x y)
where
log2 n = floor ((log n) / log 2)
2012-06-01 13:24:58 +00:00
</code>
</div>
This function is interesting.
2012-06-01 13:24:58 +00:00
For those not used to the list monad here is a natural language version of this function:
2012-06-14 16:04:16 +00:00
<code class="no-highlight">
2012-06-01 13:24:58 +00:00
positivePoints =
for all x in the range [-width..width]
let y be smallest number s.t. mandel x y > 0
if y is on 0 then don't return a point
else return the value corresonding to (x,y,color for (x+iy))
2012-06-14 16:04:16 +00:00
</code>
2012-06-01 13:24:58 +00:00
In fact using the list monad you write like if you consider only one element at a time and the computation is done non deterministically.
To find the smallest number such that `mandel x y > 0` we use a simple dichotomy:
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
2012-06-14 16:04:16 +00:00
-- given f min max nbtest,
-- considering
-- - f is an increasing function
-- - f(min)=0
-- - f(max)≠0
-- then maxZeroIndex f min max nbtest returns x such that
-- f(x - ε)=0 and f(x + ε)≠0
-- where ε=(max-min)/2^(nbtest+1)
maxZeroIndex func minval maxval 0 = (minval+maxval)/2
maxZeroIndex func minval maxval n =
2012-06-01 13:24:58 +00:00
if (func medpoint) /= 0
2012-06-14 16:04:16 +00:00
then maxZeroIndex func minval medpoint (n-1)
else maxZeroIndex func medpoint maxval (n-1)
2012-06-01 13:24:58 +00:00
where medpoint = (minval+maxval)/2
</code>
</div>
No rocket science here. See the result now:
2012-06-01 13:24:58 +00:00
blogimage("HGLMandelEdges.png","The edges of the mandelbrot set")
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
colorFromValue n =
let
t :: Int -> GLfloat
t i = 0.5 + 0.5*cos( fromIntegral i / 10 )
in
Color3 (t n) (t (n+5)) (t (n+10))
</code>
</div>
<div class="codehighlight">
<code class="haskell">
mandel x y =
let r = 2.0 * x / width
i = 2.0 * y / height
in
f (complex r i) 0 64
</code>
</div>
<div class="codehighlight">
<code class="haskell">
f :: Complex -> Complex -> Int -> Int
f c z 0 = 0
f c z n = if (magnitude z > 2 )
then n
else f c ((z*z)+c) (n-1)
</code>
</div>
</div>
<a href="code/02_Edges/HGLMandelEdge.lhs" class="cut">Download the source code of this section → 02_Edges/<strong>HGLMandelEdge.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
<hr/><a href="code/03_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 03_Mandelbulb/<strong>Mandelbulb.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## 3D Mandelbrot?
Now we will we extend to a third dimension.
But, there is no 3D equivalent to complex.
In fact, the only extension known are quaternions (in 4D).
As I know almost nothing about quaternions, I will use some extended complex,
instead of using a 3D projection of quaternions.
2012-06-01 13:24:58 +00:00
I am pretty sure this construction is not useful for numbers.
But it will be enough for us to create something that look nice.
2012-06-01 13:24:58 +00:00
This section is quite long, but don't be afraid,
most of the code is some OpenGL boilerplate.
2012-06-14 16:04:16 +00:00
If you just want to skim this section,
here is a high level representation:
2012-06-01 13:24:58 +00:00
> - OpenGL Boilerplate
>
> - set some IORef (understand variables) for states
2012-06-01 13:24:58 +00:00
> - Drawing:
>
> - set doubleBuffer, handle depth, window size...
> - Use state to apply some transformations
>
> - Keyboard: hitting some key change the state of IORef
>
> - Generate 3D Object
>
> ~~~
> allPoints :: [ColoredPoint]
> allPoints =
> for all (x,y), -width<x<width, 0<y<height
> Let z be the minimal depth such that
> mandel x y z > 0
> add the points
> (x, y, z,color)
> (x,-y, z,color)
> (x, y,-z,color)
> (x,-y,-z,color)
> + neighbors to make triangles
> ~~~
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Data.IORef
type ColoredPoint = (GLfloat,GLfloat,GLfloat,Color3 GLfloat)
</code>
</div>
</div>
We declare a new type `ExtComplex` (for extended complex).
An extension of complex numbers with a third component:
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
data ExtComplex = C (GLfloat,GLfloat,GLfloat)
deriving (Show,Eq)
instance Num ExtComplex where
-- The shape of the 3D mandelbrot
-- will depend on this formula
C (x,y,z) * C (x',y',z') = C (x*x' - y*y' - z*z',
x*y' + y*x' + z*z',
x*z' + z*x' )
-- The rest is straightforward
fromInteger n = C (fromIntegral n, 0, 0)
C (x,y,z) + C (x',y',z') = C (x+x', y+y', z+z')
abs (C (x,y,z)) = C (sqrt (x*x + y*y + z*z), 0, 0)
signum (C (x,y,z)) = C (signum x, 0, 0)
</code>
</div>
The most important part is the new multiplication instance.
Modifying this formula will change radically the shape of the result.
Here is the formula written in a more mathematical notation.
I called the third component of these extended complex _strange_.
$$ \mathrm{real} ((x,y,z) * (x',y',z')) = xx' - yy' - zz' $$
$$ \mathrm{im} ((x,y,z) * (x',y',z')) = xy' - yx' + zz' $$
$$ \mathrm{strange} ((x,y,z) * (x',y',z')) = xz' + zx' $$
Note how if `z=z'=0` then the multiplication is the same to the complex one.
2012-06-01 13:24:58 +00:00
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
extcomplex :: GLfloat -> GLfloat -> GLfloat -> ExtComplex
extcomplex x y z = C (x,y,z)
real :: ExtComplex -> GLfloat
real (C (x,y,z)) = x
im :: ExtComplex -> GLfloat
im (C (x,y,z)) = y
strange :: ExtComplex -> GLfloat
strange (C (x,y,z)) = z
magnitude :: ExtComplex -> GLfloat
magnitude = real.abs
</code>
</div>
</div>
2012-06-15 10:02:30 +00:00
### From 2D to 3D
2012-06-01 13:24:58 +00:00
As we will use some 3D, we add some new directive in the boilerplate.
But mainly, we simply state that will use some depth buffer.
And also we will listen the keyboard.
<div class="codehighlight">
<code class="haskell">
main :: IO ()
main = do
-- GLUT need to be initialized
(progname,_) <- getArgsAndInitialize
-- We will use the double buffered mode (GL constraint)
-- We also Add the DepthBuffer (for 3D)
initialDisplayMode $=
[WithDepthBuffer,DoubleBuffered,RGBMode]
-- We create a window with some title
createWindow "3D HOpengGL Mandelbrot"
-- We add some directives
depthFunc $= Just Less
windowSize $= Size 500 500
-- Some state variables (I know it feels BAD)
angle <- newIORef ((35,0)::(GLfloat,GLfloat))
zoom <- newIORef (2::GLfloat)
campos <- newIORef ((0.7,0)::(GLfloat,GLfloat))
-- Function to call each frame
2012-06-01 13:24:58 +00:00
idleCallback $= Just idle
-- Function to call when keyboard or mouse is used
2012-06-01 13:24:58 +00:00
keyboardMouseCallback $=
Just (keyboardMouse angle zoom campos)
-- Each time we will need to update the display
-- we will call the function 'display'
-- But this time, we add some parameters
displayCallback $= display angle zoom campos
-- We enter the main loop
mainLoop
</code>
</div>
The `idle` is here to change the states.
There should never be any modification done in the `display` function.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
idle = postRedisplay Nothing
</code>
</div>
We introduce some helper function to manipulate
standard `IORef`.
Mainly `modVar x f` is equivalent to the imperative `x:=f(x)`,
`modFst (x,y) (+1)` is equivalent to `(x,y) := (x+1,y)`
and `modSnd (x,y) (+1)` is equivalent to `(x,y) := (x,y+1)`
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
modVar v f = do
v' <- get v
v $= (f v')
mapFst f (x,y) = (f x, y)
mapSnd f (x,y) = ( x,f y)
</code>
</div>
And we use them to code the function handling keyboard.
We will use the keys `hjkl` to rotate,
`oi` to zoom and `sedf` to move.
Also, hitting space will reset the view.
Remember that `angle` and `campos` are pairs and `zoom` is a scalar.
Also note `(+0.5)` is the function `\x->x+0.5`
and `(-0.5)` is the number `-0.5` (yes I share your pain).
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
keyboardMouse angle zoom campos key state modifiers position =
-- We won't use modifiers nor position
kact angle zoom campos key state
2012-06-01 13:24:58 +00:00
where
-- reset view when hitting space
kact a z p (Char ' ') Down = do
a $= (0,0) -- angle
z $= 1 -- zoom
p $= (0,0) -- camera position
2012-06-01 13:24:58 +00:00
-- use of hjkl to rotate
kact a _ _ (Char 'h') Down = modVar a (mapFst (+0.5))
kact a _ _ (Char 'l') Down = modVar a (mapFst (+(-0.5)))
kact a _ _ (Char 'j') Down = modVar a (mapSnd (+0.5))
kact a _ _ (Char 'k') Down = modVar a (mapSnd (+(-0.5)))
-- use o and i to zoom
kact _ z _ (Char 'o') Down = modVar z (*1.1)
kact _ z _ (Char 'i') Down = modVar z (*0.9)
2012-06-01 13:24:58 +00:00
-- use sdfe to move the camera
kact _ _ p (Char 's') Down = modVar p (mapFst (+0.1))
kact _ _ p (Char 'f') Down = modVar p (mapFst (+(-0.1)))
kact _ _ p (Char 'd') Down = modVar p (mapSnd (+0.1))
kact _ _ p (Char 'e') Down = modVar p (mapSnd (+(-0.1)))
-- any other keys does nothing
kact _ _ _ _ _ = return ()
</code>
</div>
Note `display` take some parameters this time.
This function if full of boilerplate:
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
display angle zoom position = do
-- set the background color (dark solarized theme)
clearColor $= Color4 0 0.1686 0.2117 1
clear [ColorBuffer,DepthBuffer]
-- Transformation to change the view
loadIdentity -- reset any transformation
-- tranlate
(x,y) <- get position
translate $ Vector3 x y 0
-- zoom
z <- get zoom
scale z z z
-- rotate
(xangle,yangle) <- get angle
rotate xangle $ Vector3 1.0 0.0 (0.0::GLfloat)
rotate yangle $ Vector3 0.0 1.0 (0.0::GLfloat)
2012-06-01 13:24:58 +00:00
-- Now that all transformation were made
-- We create the object(s)
preservingMatrix drawMandelbrot
2012-06-01 13:24:58 +00:00
swapBuffers -- refresh screen
</code>
</div>
Not much to say about this function.
Mainly there are two parts: apply some transformations, draw the object.
### The 3D Mandelbrot
We have finished with the OpenGL section, let's talk about how we
2012-06-01 13:24:58 +00:00
generate the 3D points and colors.
First, we will set the number of details to 200 pixels in the three dimensions.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
nbDetails = 200 :: GLfloat
width = nbDetails
height = nbDetails
deep = nbDetails
</code>
</div>
This time, instead of just drawing some line or some group of points,
we will show triangles.
The function `allPoints` will provide a multiple of three points.
Each three successive point representing the coordinate of each vertex of a triangle.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
drawMandelbrot = do
-- We will print Points (not triangles for example)
renderPrimitive Triangles $ do
mapM_ drawColoredPoint allPoints
where
drawColoredPoint (x,y,z,c) = do
color c
vertex $ Vertex3 x y z
</code>
</div>
In fact, we will provide six ordered points.
2012-06-01 13:24:58 +00:00
These points will be used to draw two triangles.
blogimage("triangles.png","Explain triangles")
The next function is a bit long.
Here is an approximative English version:
2012-06-01 13:24:58 +00:00
~~~
forall x from -width to width
forall y from -height to height
forall the neighbors of (x,y)
let z be the smalled depth such that (mandel x y z)>0
let c be the color given by mandel x y z
add the point corresponding to (x,y,z,c)
~~~
Also, I added a test to hide points too far from the border.
In fact, this function show points close to the surface of the modified mandelbrot set. But not the mandelbrot set itself.
<code class="haskell">
depthPoints :: [ColoredPoint]
depthPoints = do
x <- [-width..width]
y <- [-height..height]
let
2012-06-14 16:04:16 +00:00
depthOf x' y' = maxZeroIndex (mandel x' y') 0 deep logdeep
logdeep = floor ((log deep) / log 2)
2012-06-01 13:24:58 +00:00
z1 = depthOf x y
z2 = depthOf (x+1) y
z3 = depthOf (x+1) (y+1)
z4 = depthOf x (y+1)
c1 = mandel x y (z1+1)
c2 = mandel (x+1) y (z2+1)
c3 = mandel (x+1) (y+1) (z3+1)
c4 = mandel x (y+1) (z4+1)
p1 = ( x /width, y /height, z1/deep, colorFromValue c1)
p2 = ((x+1)/width, y /height, z2/deep, colorFromValue c2)
p3 = ((x+1)/width,(y+1)/height, z3/deep, colorFromValue c3)
p4 = ( x /width,(y+1)/height, z4/deep, colorFromValue c4)
2012-06-01 13:24:58 +00:00
if (and $ map (>=57) [c1,c2,c3,c4])
then []
else [p1,p2,p3,p1,p3,p4]
</code>
If you look at the function above, you see a lot of common patterns.
Haskell is very efficient to make this better.
Here is a harder to read but shorter and more generic rewritten function:
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
depthPoints :: [ColoredPoint]
depthPoints = do
x <- [-width..width]
y <- [-height..height]
2012-06-01 13:24:58 +00:00
let
neighbors = [(x,y),(x+1,y),(x+1,y+1),(x,y+1)]
2012-06-14 16:04:16 +00:00
depthOf (u,v) = maxZeroIndex (mandel u v) 0 deep logdeep
logdeep = floor ((log deep) / log 2)
2012-06-01 13:24:58 +00:00
-- zs are 3D points with found depth
zs = map (\(u,v) -> (u,v,depthOf (u,v))) neighbors
-- ts are 3D pixels + mandel value
ts = map (\(u,v,w) -> (u,v,w,mandel u v (w+1))) zs
-- ps are 3D opengl points + color value
ps = map (\(u,v,w,c') ->
(u/width,v/height,w/deep,colorFromValue c')) ts
-- If the point diverged too fast, don't display it
if (and $ map (\(_,_,_,c) -> c>=57) ts)
then []
-- Draw two triangles
else [ps!!0,ps!!1,ps!!2,ps!!0,ps!!2,ps!!3]
</code>
</div>
If you prefer the first version, then just imagine how hard it will be to change the enumeration of the point from (x,y) to (x,z) for example.
Also, we didn't searched for negative values.
This modified Mandelbrot is no more symmetric relatively to the plan `y=0`.
But it is symmetric relatively to the plan `z=0`.
Then I mirror these values.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
allPoints :: [ColoredPoint]
allPoints = planPoints ++ map inverseDepth planPoints
where
planPoints = depthPoints
2012-06-01 13:24:58 +00:00
inverseDepth (x,y,z,c) = (x,y,-z+1/deep,c)
</code>
</div>
The rest of the program is very close to the preceding one.
2012-06-01 13:24:58 +00:00
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
2012-06-14 16:04:16 +00:00
-- given f min max nbtest,
-- considering
-- - f is an increasing function
-- - f(min)=0
-- - f(max)≠0
-- then maxZeroIndex f min max nbtest returns x such that
-- f(x - ε)=0 and f(x + ε)≠0
-- where ε=(max-min)/2^(nbtest+1)
maxZeroIndex :: (Fractional a,Num a,Num b,Eq b) =>
(a -> b) -> a -> a -> Int -> a
maxZeroIndex func minval maxval 0 = (minval+maxval)/2
maxZeroIndex func minval maxval n =
2012-06-01 13:24:58 +00:00
if (func medpoint) /= 0
2012-06-14 16:04:16 +00:00
then maxZeroIndex func minval medpoint (n-1)
else maxZeroIndex func medpoint maxval (n-1)
2012-06-01 13:24:58 +00:00
where medpoint = (minval+maxval)/2
</code>
</div>
I made the color slightly brighter
<div class="codehighlight">
<code class="haskell">
colorFromValue n =
let
t :: Int -> GLfloat
t i = 0.7 + 0.3*cos( fromIntegral i / 10 )
in
Color3 (t n) (t (n+5)) (t (n+10))
</code>
</div>
We only changed from `Complex` to `ExtComplex` of the main `f` function.
<div class="codehighlight">
<code class="haskell">
f :: ExtComplex -> ExtComplex -> Int -> Int
f c z 0 = 0
f c z n = if (magnitude z > 2 )
then n
else f c ((z*z)+c) (n-1)
</code>
</div>
</div>
We simply add a new dimension to the `mandel` function
and change the type signature of `f` from `Complex` to `ExtComplex`.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
mandel x y z =
let r = 2.0 * x / width
i = 2.0 * y / height
s = 2.0 * z / deep
in
f (extcomplex r i s) 0 64
</code>
</div>
Here is the result:
2012-06-01 13:24:58 +00:00
blogimage("mandelbrot_3D.png","A 3D mandelbrot like")
<a href="code/03_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 03_Mandelbulb/<strong>Mandelbulb.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
<hr/><a href="code/04_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 04_Mandelbulb/<strong>Mandelbulb.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## Naïve code cleaning
2012-06-01 13:24:58 +00:00
The first thing to do is to separate the GLUT/OpenGL
part from the computation of the shape.
Here is the cleaned version of the preceding section.
2012-06-01 13:24:58 +00:00
Most boilerplate was put in external files.
- [`YBoiler.hs`](code/04_Mandelbulb/YBoiler.hs), the 3D rendering
- [`Mandel`](code/04_Mandelbulb/Mandel.hs), the mandel function
- [`ExtComplex`](code/04_Mandelbulb/ExtComplex.hs), the extended complexes
<div class="codehighlight">
<code class="haskell">
import YBoiler -- Most the OpenGL Boilerplate
import Mandel -- The 3D Mandelbrot maths
</code>
</div>
The `yMainLoop` takes two arguments:
the title of the window
and a function from time to triangles
<div class="codehighlight">
<code class="haskell">
main :: IO ()
main = yMainLoop "3D Mandelbrot" (\_ -> allPoints)
</code>
</div>
We set some global constant (this is generally bad).
<div class="codehighlight">
<code class="haskell">
nbDetails = 200 :: GLfloat
width = nbDetails
height = nbDetails
deep = nbDetails
</code>
</div>
We then generate colored points from our function.
This is similar to the preceding section.
<div class="codehighlight">
<code class="haskell">
allPoints :: [ColoredPoint]
allPoints = planPoints ++ map inverseDepth planPoints
where
planPoints = depthPoints ++ map inverseHeight depthPoints
inverseHeight (x,y,z,c) = (x,-y,z,c)
inverseDepth (x,y,z,c) = (x,y,-z+1/deep,c)
</code>
</div>
<div class="codehighlight">
<code class="haskell">
depthPoints :: [ColoredPoint]
depthPoints = do
x <- [-width..width]
y <- [0..height]
let
neighbors = [(x,y),(x+1,y),(x+1,y+1),(x,y+1)]
2012-06-14 16:04:16 +00:00
depthOf (u,v) = maxZeroIndex (ymandel u v) 0 deep 7
2012-06-01 13:24:58 +00:00
-- zs are 3D points with found depth
zs = map (\(u,v) -> (u,v,depthOf (u,v))) neighbors
-- ts are 3D pixels + mandel value
ts = map (\(u,v,w) -> (u,v,w,ymandel u v (w+1))) zs
-- ps are 3D opengl points + color value
ps = map (\(u,v,w,c') ->
(u/width,v/height,w/deep,colorFromValue c')) ts
-- If the point diverged too fast, don't display it
if (and $ map (\(_,_,_,c) -> c>=57) ts)
then []
-- Draw two triangles
else [ps!!0,ps!!1,ps!!2,ps!!0,ps!!2,ps!!3]
2012-06-14 16:04:16 +00:00
-- given f min max nbtest,
-- considering
-- - f is an increasing function
-- - f(min)=0
-- - f(max)≠0
-- then maxZeroIndex f min max nbtest returns x such that
-- f(x - ε)=0 and f(x + ε)≠0
-- where ε=(max-min)/2^(nbtest+1)
maxZeroIndex func minval maxval 0 = (minval+maxval)/2
maxZeroIndex func minval maxval n =
2012-06-01 13:24:58 +00:00
if (func medpoint) /= 0
2012-06-14 16:04:16 +00:00
then maxZeroIndex func minval medpoint (n-1)
else maxZeroIndex func medpoint maxval (n-1)
2012-06-01 13:24:58 +00:00
where medpoint = (minval+maxval)/2
colorFromValue n =
let
t :: Int -> GLfloat
t i = 0.7 + 0.3*cos( fromIntegral i / 10 )
in
((t n),(t (n+5)),(t (n+10)))
ymandel x y z = mandel (2*x/width) (2*y/height) (2*z/deep) 64
</code>
</div>
This code is cleaner but many things doesn't feel right.
First, all the user interaction code is outside our main file.
I feel it is okay to hide the detail for the rendering.
But I would have preferred to control the user actions.
On the other hand, we continue to handle a lot rendering details.
For example, we provide ordered vertices.
<a href="code/04_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 04_Mandelbulb/<strong>Mandelbulb.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
<hr/><a href="code/05_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 05_Mandelbulb/<strong>Mandelbulb.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## Functional organization?
Some points:
2012-06-14 16:04:16 +00:00
1. OpenGL and GLUT is done in C.
2012-06-01 13:24:58 +00:00
In particular the `mainLoop` function is a direct link to the C library (FFI).
2012-06-14 16:04:16 +00:00
This function is clearly far from the functional paradigm.
2012-06-01 13:24:58 +00:00
Could we make this better?
2012-06-14 16:04:16 +00:00
We will have two choices:
- create our own `mainLoop` function to make it more functional.
- deal with the imperative nature of the GLUT `mainLoop` function.
As one of the goal of this article is to understand how to deal with existing libraries and particularly the one coming from imperative languages, we will continue to use the `mainLoop` function.
2. Our main problem come from user interaction.
If you ask "the Internet",
about how to deal with user interaction with a functional paradigm,
the main answer is to use _functional reactive programming_ (FRP).
I won't use FRP in this article.
Instead, I'll use a simpler while less effective way to deal with user interaction.
But The method I'll use will be as pure and functional as possible.
Here is how I imagine things should go.
First, what the main loop should look like if we could make our own:
2012-06-01 13:24:58 +00:00
2012-06-13 15:59:29 +00:00
<code class="no-highlight">
2012-06-01 13:24:58 +00:00
functionalMainLoop =
Read user inputs and provide a list of actions
Apply all actions to the World
Display one frame
repetere aeternum
</code>
Clearly, ideally we should provide only three parameters to this main loop function:
- an initial World state
- a mapping between the user interaction and function which modify the world
- a function taking two parameters: time and world state and render a new world without user interaction.
Here is a real working code, I've hidden most display functions.
The YGL, is a kind of framework to display 3D functions.
But it can easily be extended to many kind of representation.
<div class="codehighlight">
<code class="haskell">
import YGL -- Most the OpenGL Boilerplate
import Mandel -- The 3D Mandelbrot maths
</code>
</div>
We first set the mapping between user input and actions.
The type of each couple should be of the form
`(user input, f)` where (in a first time) `f:World -> World`.
It means, the user input will transform the world state.
<div class="codehighlight">
<code class="haskell">
-- Centralize all user input interaction
inputActionMap :: InputMap World
inputActionMap = inputMapFromList [
2012-06-13 15:59:29 +00:00
(Press 'k' , rotate xdir 5)
2012-06-01 13:24:58 +00:00
,(Press 'i' , rotate xdir (-5))
2012-06-13 15:59:29 +00:00
,(Press 'j' , rotate ydir 5)
2012-06-01 13:24:58 +00:00
,(Press 'l' , rotate ydir (-5))
2012-06-13 15:59:29 +00:00
,(Press 'o' , rotate zdir 5)
2012-06-01 13:24:58 +00:00
,(Press 'u' , rotate zdir (-5))
2012-06-13 15:59:29 +00:00
,(Press 'f' , translate xdir 0.1)
2012-06-01 13:24:58 +00:00
,(Press 's' , translate xdir (-0.1))
2012-06-13 15:59:29 +00:00
,(Press 'e' , translate ydir 0.1)
2012-06-01 13:24:58 +00:00
,(Press 'd' , translate ydir (-0.1))
2012-06-13 15:59:29 +00:00
,(Press 'z' , translate zdir 0.1)
2012-06-01 13:24:58 +00:00
,(Press 'r' , translate zdir (-0.1))
2012-06-13 15:59:29 +00:00
,(Press '+' , zoom 1.1)
2012-06-01 13:24:58 +00:00
,(Press '-' , zoom (1/1.1))
2012-06-13 15:59:29 +00:00
,(Press 'h' , resize 1.2)
2012-06-01 13:24:58 +00:00
,(Press 'g' , resize (1/1.2))
]
</code>
</div>
And of course a type design the World State.
The important part is that it is our World State type.
We could have used any kind of data type.
<div class="codehighlight">
<code class="haskell">
-- I prefer to set my own name for these types
data World = World {
angle :: Point3D
, scale :: Scalar
, position :: Point3D
, shape :: Scalar -> Function3D
, box :: Box3D
, told :: Time -- last frame time
}
</code>
</div>
The important part to glue our own type to the framework
is to make our type an instance of the type class `DisplayableWorld`.
We simply have to provide the definition of some functions.
<div class="codehighlight">
<code class="haskell">
instance DisplayableWorld World where
winTitle _ = "The YGL Mandelbulb"
camera w = Camera {
camPos = position w,
camDir = angle w,
camZoom = scale w }
2012-06-14 16:04:16 +00:00
-- objects for world w
-- is the list of one unique element
-- The element is an YObject
-- more precisely the XYFunc Function3D Box3D
-- where the Function3D is the type
-- Point -> Point -> Maybe (Point,Color)
-- and its value here is ((shape w) res)
-- and the Box3D value is defbox
2012-06-01 13:24:58 +00:00
objects w = [XYFunc ((shape w) res) defbox]
where
res = resolution $ box w
defbox = box w
</code>
</div>
The `camera` function will retrieve an object of type `Camera` which contains
most necessary information to set our camera.
The `objects` function will returns a list of objects.
Their type is `YObject`. Note the generation of triangles is no more in this file.
Until here we only used declarative pattern.
We also need to set all our transformation functions.
These function are used to update the world state.
<div class="codehighlight">
<code class="haskell">
xdir :: Point3D
xdir = makePoint3D (1,0,0)
ydir :: Point3D
ydir = makePoint3D (0,1,0)
zdir :: Point3D
zdir = makePoint3D (0,0,1)
</code>
</div>
2012-06-14 16:04:16 +00:00
Note `(-*<)` is the scalar product (`α -*< (x,y,z) = (αx,αy,αz)`).
Also note we could add two Point3D.
2012-06-01 13:24:58 +00:00
<div class="codehighlight">
<code class="haskell">
rotate :: Point3D -> Scalar -> World -> World
rotate dir angleValue world =
world {
angle = (angle world) + (angleValue -*< dir) }
translate :: Point3D -> Scalar -> World -> World
translate dir len world =
world {
position = (position world) + (len -*< dir) }
zoom :: Scalar -> World -> World
zoom z world = world {
scale = z * scale world }
resize :: Scalar -> World -> World
resize r world = world {
box = (box world) {
resolution = sqrt ((resolution (box world))**2 * r) }}
</code>
</div>
The resize is used to generate the 3D function.
As I wanted the time spent to generate a more detailed view
to grow linearly I use this not so straightforward formula.
The `yMainLoop` takes three arguments.
- A map between user Input and world transformation
- A timed world transformation
- An initial world state
<div class="codehighlight">
<code class="haskell">
main :: IO ()
main = yMainLoop inputActionMap idleAction initialWorld
</code>
</div>
Here is our initial world state.
<div class="codehighlight">
<code class="haskell">
-- We initialize the world state
-- then angle, position and zoom of the camera
-- And the shape function
initialWorld :: World
initialWorld = World {
angle = makePoint3D (-30,-30,0)
, position = makePoint3D (0,0,0)
, scale = 0.8
, shape = shapeFunc
, box = Box3D { minPoint = makePoint3D (-2,-2,-2)
, maxPoint = makePoint3D (2,2,2)
, resolution = 0.16 }
, told = 0
}
</code>
</div>
We will define `shapeFunc` later.
Here is the function which transform the world even without user action.
Mainly it makes some rotation.
<div class="codehighlight">
<code class="haskell">
idleAction :: Time -> World -> World
idleAction tnew world = world {
angle = (angle world) + (delta -*< zdir)
, told = tnew
}
where
anglePerSec = 5.0
delta = anglePerSec * elapsed / 1000.0
elapsed = fromIntegral (tnew - (told world))
</code>
</div>
Now the function which will generate points in 3D.
The first parameter (`res`) is the resolution of the vertex generation.
More precisely, `res` is distance between two points on one direction.
We need it to "close" our shape.
The type `Function3D` is `Point -> Point -> Maybe Point`.
Because we consider partial functions
(for some `(x,y)` our function can be undefined).
<div class="codehighlight">
<code class="haskell">
shapeFunc :: Scalar -> Function3D
shapeFunc res x y =
let
2012-06-14 16:04:16 +00:00
z = maxZeroIndex (ymandel x y) 0 1 20
2012-06-01 13:24:58 +00:00
in
2012-06-14 16:04:16 +00:00
if and [ maxZeroIndex (ymandel (x+xeps) (y+yeps)) 0 1 20 < 0.000001 |
2012-06-01 13:24:58 +00:00
val <- [res], xeps <- [-val,val], yeps<-[-val,val]]
then Nothing
else Just (z,colorFromValue ((ymandel x y z) * 64))
</code>
</div>
With the color function.
<div class="codehighlight">
<code class="haskell">
colorFromValue :: Point -> Color
colorFromValue n =
let
t :: Point -> Scalar
t i = 0.7 + 0.3*cos( i / 10 )
in
makeColor (t n) (t (n+5)) (t (n+10))
</code>
</div>
The rest is similar to the preceding sections.
<div class="codehighlight">
<code class="haskell">
2012-06-14 16:04:16 +00:00
-- given f min max nbtest,
-- considering
-- - f is an increasing function
-- - f(min)=0
-- - f(max)≠0
-- then maxZeroIndex f min max nbtest returns x such that
-- f(x - ε)=0 and f(x + ε)≠0
-- where ε=(max-min)/2^(nbtest+1)
maxZeroIndex :: (Fractional a,Num a,Num b,Eq b) =>
2012-06-01 13:24:58 +00:00
(a -> b) -> a -> a -> Int -> a
2012-06-15 10:02:30 +00:00
maxZeroIndex _ minval maxval 0 = (minval+maxval)/2
2012-06-14 16:04:16 +00:00
maxZeroIndex func minval maxval n =
if (func medpoint) /= 0
then maxZeroIndex func minval medpoint (n-1)
else maxZeroIndex func medpoint maxval (n-1)
2012-06-01 13:24:58 +00:00
where medpoint = (minval+maxval)/2
ymandel :: Point -> Point -> Point -> Point
ymandel x y z = fromIntegral (mandel x y z 64) / 64
</code>
</div>
2012-06-14 16:04:16 +00:00
I won't explain how the magic occurs here.
If you are interested, just read the file [`YGL.hs`](code/05_Mandelbulb/YGL.hs).
It is commented a lot.
2012-06-01 13:24:58 +00:00
- [`YGL.hs`](code/05_Mandelbulb/YGL.hs), the 3D rendering framework
- [`Mandel`](code/05_Mandelbulb/Mandel.hs), the mandel function
- [`ExtComplex`](code/05_Mandelbulb/ExtComplex.hs), the extended complexes
<a href="code/05_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 05_Mandelbulb/<strong>Mandelbulb.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
<hr/><a href="code/06_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 06_Mandelbulb/<strong>Mandelbulb.lhs</strong></a>
2012-06-01 13:24:58 +00:00
## Optimization
2012-06-13 15:59:29 +00:00
From the architecture stand point all is clear.
2012-06-14 16:04:16 +00:00
If you read the code of `YGL.hs`, you'll see I didn't made everything perfect.
For example, I didn't finished the code of the lights.
2012-06-13 15:59:29 +00:00
But I believe it is a good first step and it will be easy to go further.
The separation between rendering and world behavior is clear.
Unfortunately the program of the preceding session is extremely slow.
We compute the Mandelbulb for each frame now.
2012-06-01 13:24:58 +00:00
Before we had
2012-06-13 15:59:29 +00:00
<code class="no-highlight">
Constant Function -> Constant List of Triangles -> Display
</code>
2012-06-01 13:24:58 +00:00
Now we have
2012-06-13 15:59:29 +00:00
<code class="no-highlight">
World -> Function -> List of Objects -> Atoms -> Display
</code>
2012-06-01 13:24:58 +00:00
And the World state could change.
Then it is no more straightforward for the compiler to understand
when not to recompute the entire list of atoms.
Then to optimize we will have to make things a little less separate.
We must control the flow of atom generation.
Mostly the program is the same as before, but instead of providing a
function, we will provide the list of atoms directly.
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
import YGL -- Most the OpenGL Boilerplate
import Mandel -- The 3D Mandelbrot maths
-- Centralize all user input interaction
inputActionMap :: InputMap World
inputActionMap = inputMapFromList [
2012-06-15 10:02:30 +00:00
(Press ' ' , switchRotation)
,(Press 'k' , rotate xdir 5)
2012-06-01 13:24:58 +00:00
,(Press 'i' , rotate xdir (-5))
,(Press 'j' , rotate ydir 5)
,(Press 'l' , rotate ydir (-5))
,(Press 'o' , rotate zdir 5)
,(Press 'u' , rotate zdir (-5))
,(Press 'f' , translate xdir 0.1)
,(Press 's' , translate xdir (-0.1))
,(Press 'e' , translate ydir 0.1)
,(Press 'd' , translate ydir (-0.1))
,(Press 'z' , translate zdir 0.1)
,(Press 'r' , translate zdir (-0.1))
,(Press '+' , zoom 1.1)
,(Press '-' , zoom (1/1.1))
,(Press 'h' , resize 2.0)
,(Press 'g' , resize (1/2.0))
2012-06-01 13:24:58 +00:00
]
</code>
</div>
</div>
<div class="codehighlight">
<code class="haskell">
data World = World {
angle :: Point3D
, anglePerSec :: Scalar
2012-06-01 13:24:58 +00:00
, scale :: Scalar
, position :: Point3D
, box :: Box3D
, told :: Time
-- We replace shape by cache
, cache :: [YObject]
}
</code>
</div>
<div class="codehighlight">
<code class="haskell">
instance DisplayableWorld World where
winTitle _ = "The YGL Mandelbulb"
camera w = Camera {
camPos = position w,
camDir = angle w,
camZoom = scale w }
-- We update our objects instanciation
objects = cache
</code>
</div>
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
xdir :: Point3D
xdir = makePoint3D (1,0,0)
ydir :: Point3D
ydir = makePoint3D (0,1,0)
zdir :: Point3D
zdir = makePoint3D (0,0,1)
rotate :: Point3D -> Scalar -> World -> World
rotate dir angleValue world =
world {
2012-06-15 10:02:30 +00:00
angle = angle world + (angleValue -*< dir) }
2012-06-01 13:24:58 +00:00
2012-06-15 10:02:30 +00:00
switchRotation :: World -> World
switchRotation world =
world {
anglePerSec = if anglePerSec world > 0 then 0 else 5.0 }
2012-06-01 13:24:58 +00:00
translate :: Point3D -> Scalar -> World -> World
translate dir len world =
world {
2012-06-15 10:02:30 +00:00
position = position world + (len -*< dir) }
2012-06-01 13:24:58 +00:00
zoom :: Scalar -> World -> World
zoom z world = world {
scale = z * scale world }
</code>
</div>
<div class="codehighlight">
<code class="haskell">
main :: IO ()
main = yMainLoop inputActionMap idleAction initialWorld
</code>
</div>
</div>
Our initial world state is slightly changed:
<div class="codehighlight">
<code class="haskell">
-- We initialize the world state
-- then angle, position and zoom of the camera
-- And the shape function
initialWorld :: World
initialWorld = World {
angle = makePoint3D (30,30,0)
, anglePerSec = 5.0
2012-06-01 13:24:58 +00:00
, position = makePoint3D (0,0,0)
, scale = 1.0
2012-06-14 16:04:16 +00:00
, box = Box3D { minPoint = makePoint3D (0-eps, 0-eps, 0-eps)
, maxPoint = makePoint3D (0+eps, 0+eps, 0+eps)
, resolution = 0.02 }
2012-06-01 13:24:58 +00:00
, told = 0
-- We declare cache directly this time
, cache = objectFunctionFromWorld initialWorld
}
2012-06-14 16:04:16 +00:00
where eps=2
2012-06-01 13:24:58 +00:00
</code>
</div>
We use the `YGL.getObject3DFromShapeFunction` function directly.
This way instead of providing `XYFunc`, we provide directly a list of Atoms.
<div class="codehighlight">
<code class="haskell">
objectFunctionFromWorld :: World -> [YObject]
objectFunctionFromWorld w = [Atoms atomList]
where atomListPositive =
getObject3DFromShapeFunction
(shapeFunc (resolution (box w))) (box w)
2012-06-01 13:24:58 +00:00
atomList = atomListPositive ++
map negativeTriangle atomListPositive
negativeTriangle (ColoredTriangle (p1,p2,p3,c)) =
ColoredTriangle (negz p1,negz p3,negz p2,c)
2012-06-01 13:24:58 +00:00
where negz (P (x,y,z)) = P (x,y,-z)
</code>
</div>
We know that resize is the only world change that necessitate to
recompute the list of atoms (triangles).
Then we update our world state accordingly.
<div class="codehighlight">
<code class="haskell">
resize :: Scalar -> World -> World
resize r world =
tmpWorld { cache = objectFunctionFromWorld tmpWorld }
where
tmpWorld = world { box = (box world) {
resolution = sqrt ((resolution (box world))**2 * r) }}
</code>
</div>
All the rest is exactly the same.
<div style="display:none">
<div class="codehighlight">
<code class="haskell">
idleAction :: Time -> World -> World
idleAction tnew world =
world {
2012-06-15 10:02:30 +00:00
angle = angle world + (delta -*< zdir)
2012-06-01 13:24:58 +00:00
, told = tnew
}
where
delta = anglePerSec world * elapsed / 1000.0
2012-06-01 13:24:58 +00:00
elapsed = fromIntegral (tnew - (told world))
shapeFunc :: Scalar -> Function3D
shapeFunc res x y =
let
2012-06-14 16:04:16 +00:00
z = maxZeroIndex (ymandel x y) 0 1 20
2012-06-01 13:24:58 +00:00
in
2012-06-14 16:04:16 +00:00
if and [ maxZeroIndex (ymandel (x+xeps) (y+yeps)) 0 1 20 < 0.000001 |
2012-06-01 13:24:58 +00:00
val <- [res], xeps <- [-val,val], yeps<-[-val,val]]
then Nothing
else Just (z,colorFromValue 0)
2012-06-01 13:24:58 +00:00
colorFromValue :: Point -> Color
colorFromValue n =
let
t :: Point -> Scalar
t i = 0.0 + 0.5*cos( i /10 )
2012-06-01 13:24:58 +00:00
in
makeColor (t n) (t (n+5)) (t (n+10))
2012-06-14 16:04:16 +00:00
-- given f min max nbtest,
-- considering
-- - f is an increasing function
-- - f(min)=0
-- - f(max)≠0
-- then maxZeroIndex f min max nbtest returns x such that
-- f(x - ε)=0 and f(x + ε)≠0
-- where ε=(max-min)/2^(nbtest+1)
maxZeroIndex :: (Fractional a,Num a,Num b,Eq b) =>
2012-06-01 13:24:58 +00:00
(a -> b) -> a -> a -> Int -> a
2012-06-14 16:04:16 +00:00
maxZeroIndex _ minval maxval 0 = (minval+maxval)/2
maxZeroIndex func minval maxval n =
2012-06-01 13:24:58 +00:00
if func medpoint /= 0
2012-06-14 16:04:16 +00:00
then maxZeroIndex func minval medpoint (n-1)
else maxZeroIndex func medpoint maxval (n-1)
2012-06-01 13:24:58 +00:00
where medpoint = (minval+maxval)/2
ymandel :: Point -> Point -> Point -> Point
ymandel x y z = fromIntegral (mandel x y z 64) / 64
</code>
</div>
</div>
2012-06-14 16:04:16 +00:00
And you can also consider small changes in other source files.
2012-06-01 13:24:58 +00:00
- [`YGL.hs`](code/06_Mandelbulb/YGL.hs), the 3D rendering framework
- [`Mandel`](code/06_Mandelbulb/Mandel.hs), the mandel function
- [`ExtComplex`](code/06_Mandelbulb/ExtComplex.hs), the extended complexes
<a href="code/06_Mandelbulb/Mandelbulb.lhs" class="cut">Download the source code of this section → 06_Mandelbulb/<strong>Mandelbulb.lhs</strong> </a>
2012-06-01 13:24:58 +00:00
2012-06-14 16:04:16 +00:00
## Conclusion
As we can use imperative style in a functional language,
know you can use functional style in imperative languages.
This article exposed a way to organize some code in a functional way.
I'd like to stress the usage of Haskell made it very simple to achieve this.
Once you are used to pure functional style,
it is hard not to see all advantages it offers.
The code in the two last sections is completely pure and functional.
Furthermore I don't use `GLfloat`, `Color3` or any other OpenGL type.
If I want to use another library in the future,
I would be able to keep all the pure code and simply update the YGL module.
The `YGL` module can be seen as a "wrapper" around 3D display and user interaction.
It is a clean separator between the imperative paradigm and functional paradigm.
If you want to go further, it shouldn't be hard to add parallelism.
This should be easy mainly because most of the visible code is pure.
Such an optimization would have been harder by using directly the OpenGL library.
You should also want to make a more precise object. Because, the Mandelbulb is
clearly not convex. But a precise rendering might be very long from
O(n².log(n)) to O(n³).