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Abstract

Druid explained with high altitude point of view
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1 Druid the Sales Pitch

e Sub-Second Queries

e Real-time Streams

e Scalable to Petabytes

¢ Deploy Anywhere

e Vibrant Community (Open Source)

o Ideal for powering user-facing analytic applications
e Deploy anywhere: cloud, on-premise, integrate with Haddop, Spark,
Kafka, Storm, Samza

2 Intro

2.1 Experience

¢ Real Time Social Media Analytics

2.2 Real Time?

o Ingestion Latency: seconds
e Query Latency: seconds

2.3 Demand
o Twitter: 20k msg/s, Imsg = 10ko during 24h

o Facebook public: 1000 to 2000 msg/s continuously
o Low Latency

2.4 Reality

o Twitter: 400 msg/s continuously, burst to 1500
o Facebook: 1000 to 2000 msg/s



3 Origin (PHP)

THAT MOMENTWHEN|YOU
REALISE

YOU HAVEPHP

maiieqmeme.org

4 1st Refactoring (Node.js)

e Ingestion still in PHP

e Node.js, Perl, Java & R for sentiment analysis

+ MongoDB

e Manually made time series (Incremental Map/Reduce)
e Manually coded HyperLogLog in js



5 Return of Experience

6 Return of Experience

o Ingestion still in PHP (600 msg/s max)
o Node.js, Perl, Java (10 msg/s max)

7 2nd Refactoring

o Haskell

¢ Clojure / Clojurescript
o Kafka / Zookeeper

o Mesos / Marathon

o Elasticsearch

e Druid



Figure 1: Too Slow, Bored

8 2nd Refactoring (FTW!)

NOW WE'RE TALKING -

memegenerator.net




9 2nd Refactoring return of experience

e No limit, everything is scalable

o High availability

o Low latency: Ingestion & User faced querying
e Cheap if done correctly

Thanks Druid!

10 Demo

o Low Latency High Volume of Data Analysis
o Typically pulse

DEMO Time

11 Pre Considerations

11.1 Discovered vs Invented

Try to conceptualize a s.t.
o Ingest Events
e Real-Time Queries
e Scalable
o Highly Available

Analytics: timeseries, alerting system, top N, etc...

11.2 In the End

Druid concepts are always emerging naturally

12 Druid

12.1 Who?

Metamarkets

Powered by Druid

e Alibaba, Cisco, Criteo, eBay, Hulu, Netflix, Paypal...



12.2 Goal

Druid is an open source store designed for real-time exploratory an-
alytics on large data sets.

hosted dashboard that would allow users to arbitrarily explore and
visualize event streams.

12.3 Concepts

e Column-oriented storage layout
o distributed, shared-nothing architecture
¢ advanced indexing structure

12.4 Key Features

e Sub-second OLAP Queries

¢ Real-time Streaming Ingestion
e Power Analytic Applications

o Cost Effective

e High Available

e Scalable

12.5 Right for me?
e require fast aggregations
e exploratory analytics
e analysis in real-time

« lots of data (trillions of events, petabytes of data)
e 10 single point of failure

13 High Level Architecture

13.1 Inspiration

o Google’s BigQuery /Dremel
e Google’s PowerDrill

13.2 Index / Immutability

Druid indexes data to create mostly immutable views.


http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36632.pdf
http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf

13.3 Storage

Store data in custom column format highly optimized for aggregation & filter.

13.4 Specialized Nodes

e A Druid cluster is composed of various type of nodes

e Each designed to do a small set of things very well

¢ Nodes don’t need to be deployed on individual hardware
e Many node types can be colocated in production

14 Druid vs X

14.1 Elasticsearch

e resource requirement much higher for ingestion & aggregation
o No data summarization (100x in real world data)

14.2 Key/Value Stores (HBase/Cassandra/OpenTSDB)

e Must Pre-compute Result

— Exponential storage
— Hours of pre-processing time

o Use the dimensions as key (like in OpenTSDB)

— No filter index other than range
— Hard for complex predicates

14.3 Spark
e Druid can be used to accelerate OLAP queries in Spark

e Druid focuses on the latencies to ingest and serve queries
e Too long for end user to arbitrarily explore data

14.4 SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)

e Queries: more data transfer between nodes
o Data Ingestion: bottleneck by backing store
e Query Flexibility: more flexible (full joins)

10



15 Data

15.1 Concepts

¢ Timestamp column: query centered on time axis
e Dimension columns: strings (used to filter or to group)
e Metric columns: used for aggregations (count, sum, mean, etc...)

15.2 Indexing

o Immutable snapshots of data

o data structure highly optimized for analytic queries
e Each column is stored separately

¢ Indexes data on a per shard (segment) level

15.3 Loading

o Real-Time
« Batch

15.4 Querying

e JSON over HTTP
¢ Single Table Operations, no joins.

15.5 Segments

e Per time interval
— skip segments when querying
e Immutable

— Cache friendly
— No locking

o Versioned

— No locking
— Read-write concurrency

11



16 Roll-up

16.1 Example

timestamp page ... added deleted
2011-01-01T00:01:35Z Cthulhu 10 65
2011-01-01T00:03:63Z Cthulhu 15 62
2011-01-01T01:04:51Z Cthulhu 32 45
2011-01-01T01:01:00Z Azatoth 17 87
2011-01-01T01:02:00Z Azatoth 43 99
2011-01-01T02:03:00Z Azatoth 12 53
timestamp page ... nb added deleted
2011-01-01T00:00:00Z Cthulhu 2 25 127
2011-01-01T01:00:00Z Cthulhu 1 32 45
2011-01-01T01:00:00Z Azatoth 2 60 186
2011-01-01T02:00:00Z Azatoth 112 53

16.2 as SQL

GROUP BY timestamp, page, nb, added, deleted
: nb = COUNT(1)
, added = SUM(added)
, deleted = SUM(deleted)

In practice can dramatically reduce the size (up to x100)

17 Segments

17.1 Sharding

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 120 45
2011-01-01T01:00:00Z Azatoth 1 30 106

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0O

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 112 45
2011-01-01T01:00:00Z Azatoth 2 30 80

12



17.2 Core Data Structure

Timestamp Dimensions Metrics
Timestamp M Page Username | Gender | City h| Characters Added | Characters Removed
2011-01-01T01:00:00Z ||| Justin Bieber | Boxer Male San Francisco ||| 1800 25
2011-01-01T01:00:00Z [[ Justin Bieber | Reach Male Waterloo Il 42
2011-01-01T02:00:00Z || KeSha Helz Male Calgary Il 17
2011-01-01T02:00:00Z [[| Ke$Sha Xeno Male Taiyuan Il 170

o dictionary
e a bitmap for each value

e a list of the columns values encoded using the dictionary

17.3 Example

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, O, 1, 1]

bitmaps (one for each value of the column):

value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,0,1,1]

17.4 Example (multiple matches)

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, [0,1], 1, 1]

bitmaps (one for each value of the column):

value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,1,1,1]

17.5 Real-time ingestion

¢ Via Real-Time Node and Firehose

— No redundancy or HA, thus not recommended

¢ Via Indexing Service and Tranquility API
— Core API

13




— Integration with Streaming Frameworks
— HTTP Server
— Kafka Consumer

17.6 Batch Ingestion

o File based (HDFS, S3, ...)

17.7 Real-time Ingestion

Task 1: [ Interval 1[ Window ]
Task 2: L ]
_____________________________________________________ >
time
18 Querying
18.1 Query types
e Group by: group by multiple dimensions
e Top N: like grouping by a single dimension
e Timeseries: without grouping over dimensions
e Search: Dimensions lookup
e Time Boundary: Find available data timeframe
e Metadata queries
18.2 Example(s)
{"queryType": "groupBy",
"dataSource": "druidtest",
"granularity": "all",
"dimensions": [],
"aggregations": [
{"type" . "count" , "name" : "I'OWS"},
{"type": "longSum", "name": "imps", "fieldName": "impressions"},

{"type": "doubleSum", "name": "wp", "fieldName": "wp"}
1,
"intervals": ["2010-01-01T00:00/2020-01-01T00"]}

14



18.3 Result

[ {
"version" : "v1",
"timestamp" : "2010-01-01T00:00:00.000Z",
"event" : {
"imps" : 5,
"wp" : 15000.0,
"rows" : b5
}
}1

18.4 Caching

« Historical node level
— By segment
o Broker Level

— By segment and query
— groupBy is disabled on purpose!

e By default: local caching

19 Druid Components

19.1 Druid

¢ Real-time Nodes
Historical Nodes
e Broker Nodes

¢ Coordinator

o For indexing:

— Overlord
— Middle Manager

19.2 Also

o Deep Storage (S3, HDFS, ..)
o Metadata Storage (SQL)

o Load Balancer

o Cache

15



19.3 Coordinator

20

21

Real-time Nodes (pull data, index it)

Historical Nodes (keep old segments)

Broker Nodes (route queries to RT & Hist. nodes, merge)
Coordinator (manage segemnts)

For indexing:

— Overlord (distribute task to the middle manager)
— Middle Manager (execute tasks via Peons)

When not to choose Druid

Data is not time-series
Cardinality is very high
Number of dimensions is high
Setup cost must be avoided

Graphite (metrics)

Graphite

16


http://graphite.wikidot.com

22 Pivot (exploring data)

Wikipedia Edits (O]

DIMENSIONS FILTER Nov 23 - Nov 25 /\/\/ PINBOARD Edits v
SPuT  Time (Hour) x Time Series | PAGE Q x
Wikipedia:Vandalismi 1,241.0
Edits: 6532k
* WikipediaAdministra  916.0
Utilisateur:ZéroBou/L: 871.0
UserCyde/list of_car  792.0
i Page ook 2015 Russian Sukhol 7290
e User & WikipediaWikiProjeer 5560
Wikipedia:Auskunft 5350
i Namespace
Attentats_du_13novi 4460
i Language
WikipedizAdministra 3720
1 Anonymous 200k

UserDeltaQuad/lUM.  351.0

Wikipedia-Requests f  339.0
MEASURES Wikipedia:ldschkand  311.0
WikipediaWartungsb  305.0

Edits

Wikipedia:WikiProjeci 3000
Delta 100k )

Listof people_from_  291.0
Avg Delta Wikipedia:loschkand  279.0
Added Wikipédia:Signalemer  259.0
Avg Added Wikipediain_the_new  241.0
Deleted UserEranBou/Copyris  237.0

06AM 12PM O06PM TueZd O06AM 12PM O06PM Wed25 O06AM 12PM 06PM Thu26 Talk:2015_Russlan_Su 2340

Pivot

23 Caravel

(MANIIENERGY.USAGEI 07 | | Sankey  * ENERGY SANKEY 2 s o pusn oo TR
EER v ovens

Source / Target © Electricty and heat
Metric 0
Row imit

sqLo (]

Custom WHERE clause ©

Custom HAVING couse ©

Filters 0 (-]

+ 400 FILTER

Caravel
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https://github.com/implydata/pivot
https://github.com/airbnb/caravel

24 Conclusions

24.1 Precompute your time series?

24.2 Don’t reinvent it

e need a user facing API

e need time series on many dimensions
o need real-time

e big volume of data

24.3 Druid way is the right way!

Push in kafka

Add the right dimensions
Push in druid

777

Profit!

G o =
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