Druid for real-time analysis

Yann Esposito

7 Avril 2016

Abstract

Druid explained with high altitude point of view

Contents
1 Druid the Sales Pitch

2 Intro
2.1 Experience
2.2 Real Time?o
2.3 Demand
24 Reality

3 Origin (PHP)

4 1st Refactoring (Node.js)
5 Return of Experience

6 Return of Experience

7 2nd Refactoring

8 2nd Refactoring (FTW!)

9 2nd Refactoring return of experience

10 Demo

11 Pre Considerations
11.1 Discovered vs Invented

11.2 Inthe End

12 Druid
12.1 Who? e
12.2 Goal o
12.3 Concepts v oo
12.4 Key Features 0.
12.5 Right forme? oo

13 High Level Architecture
13.1 Inspiration L Lo
13.2 Index / Immutability Lo L
13.3 Storage
13.4 Specialized Nodes

14 Druid vs X
14.1 Elasticsearch oo
14.2 Key/Value Stores (HBase/Cassandra/OpenTSDB)
14.3 Spark
14.4 SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)

15 Data
15.1 Concepts
152 Indexing L
15.3 Loading
15.4 Querying
15.5 Segments

10
10

10
10
10
10
10

16 Roll-up

16.1 Example
162 asSQL.

17 Segments

17.1 Sharding
17.2 Core Data Structure
17.3 Example
17.4 Example (multiple matches)
17.5 Real-time ingestion
17.6 Batch Ingestion
17.7 Real-time Ingestion

18 Querying

18.1 Query types

18.2 Example(s)

183 Result
18.4 Caching

19 Druid Components
19.1 Druid

19.2 Also
19.3 Coordinator

20 When not to choose Druid
21 Graphite (metrics)

22 Pivot (exploring data)

23 Caravel

24 Conclusions

24.1 Precompute your time series?

24.2 Don’t reinvent it

24.3 Druid way is the right way!

12
12
12

12
12
13
13
13
13
14
14

14
14
14
15
15

15
15
15
16

16

16

17

17

1 Druid the Sales Pitch

e Sub-Second Queries

e Real-time Streams

e Scalable to Petabytes

¢ Deploy Anywhere

e Vibrant Community (Open Source)

o Ideal for powering user-facing analytic applications
e Deploy anywhere: cloud, on-premise, integrate with Haddop, Spark,
Kafka, Storm, Samza

2 Intro

2.1 Experience

¢ Real Time Social Media Analytics

2.2 Real Time?

o Ingestion Latency: seconds
e Query Latency: seconds

2.3 Demand
o Twitter: 20k msg/s, Imsg = 10ko during 24h

o Facebook public: 1000 to 2000 msg/s continuously
o Low Latency

2.4 Reality

o Twitter: 400 msg/s continuously, burst to 1500
o Facebook: 1000 to 2000 msg/s

3 Origin (PHP)

THAT MOMENTWHEN|YOU
REALISE

YOU HAVEPHP

maiieqmeme.org

4 1st Refactoring (Node.js)

e Ingestion still in PHP

e Node.js, Perl, Java & R for sentiment analysis

+ MongoDB

e Manually made time series (Incremental Map/Reduce)
e Manually coded HyperLogLog in js

5 Return of Experience

6 Return of Experience

o Ingestion still in PHP (600 msg/s max)
o Node.js, Perl, Java (10 msg/s max)

7 2nd Refactoring

o Haskell

¢ Clojure / Clojurescript
o Kafka / Zookeeper

o Mesos / Marathon

o Elasticsearch

e Druid

Figure 1: Too Slow, Bored

8 2nd Refactoring (FTW!)

NOW WE'RE TALKING -

memegenerator.net

9 2nd Refactoring return of experience

e No limit, everything is scalable

o High availability

o Low latency: Ingestion & User faced querying
e Cheap if done correctly

Thanks Druid!

10 Demo

o Low Latency High Volume of Data Analysis
o Typically pulse

DEMO Time

11 Pre Considerations

11.1 Discovered vs Invented

Try to conceptualize a s.t.
o Ingest Events
e Real-Time Queries
e Scalable
o Highly Available

Analytics: timeseries, alerting system, top N, etc...

11.2 In the End

Druid concepts are always emerging naturally

12 Druid

12.1 Who?

Metamarkets

Powered by Druid

e Alibaba, Cisco, Criteo, eBay, Hulu, Netflix, Paypal...

12.2 Goal

Druid is an open source store designed for real-time exploratory an-
alytics on large data sets.

hosted dashboard that would allow users to arbitrarily explore and
visualize event streams.

12.3 Concepts

e Column-oriented storage layout
o distributed, shared-nothing architecture
¢ advanced indexing structure

12.4 Key Features

e Sub-second OLAP Queries

¢ Real-time Streaming Ingestion
e Power Analytic Applications

o Cost Effective

e High Available

e Scalable

12.5 Right for me?
e require fast aggregations
e exploratory analytics
e analysis in real-time

« lots of data (trillions of events, petabytes of data)
e 10 single point of failure

13 High Level Architecture

13.1 Inspiration

o Google’s BigQuery /Dremel
e Google’s PowerDrill

13.2 Index / Immutability

Druid indexes data to create mostly immutable views.

http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36632.pdf
http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf

13.3 Storage

Store data in custom column format highly optimized for aggregation & filter.

13.4 Specialized Nodes

e A Druid cluster is composed of various type of nodes

e Each designed to do a small set of things very well

¢ Nodes don’t need to be deployed on individual hardware
e Many node types can be colocated in production

14 Druid vs X

14.1 Elasticsearch

e resource requirement much higher for ingestion & aggregation
o No data summarization (100x in real world data)

14.2 Key/Value Stores (HBase/Cassandra/OpenTSDB)

e Must Pre-compute Result

— Exponential storage
— Hours of pre-processing time

o Use the dimensions as key (like in OpenTSDB)

— No filter index other than range
— Hard for complex predicates

14.3 Spark
e Druid can be used to accelerate OLAP queries in Spark

e Druid focuses on the latencies to ingest and serve queries
e Too long for end user to arbitrarily explore data

14.4 SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)

e Queries: more data transfer between nodes
o Data Ingestion: bottleneck by backing store
e Query Flexibility: more flexible (full joins)

10

15 Data

15.1 Concepts

¢ Timestamp column: query centered on time axis
e Dimension columns: strings (used to filter or to group)
e Metric columns: used for aggregations (count, sum, mean, etc...)

15.2 Indexing

o Immutable snapshots of data

o data structure highly optimized for analytic queries
e Each column is stored separately

¢ Indexes data on a per shard (segment) level

15.3 Loading

o Real-Time
« Batch

15.4 Querying

e JSON over HTTP
¢ Single Table Operations, no joins.

15.5 Segments

e Per time interval
— skip segments when querying
e Immutable

— Cache friendly
— No locking

o Versioned

— No locking
— Read-write concurrency

11

16 Roll-up

16.1 Example

timestamp page ... added deleted
2011-01-01T00:01:35Z Cthulhu 10 65
2011-01-01T00:03:63Z Cthulhu 15 62
2011-01-01T01:04:51Z Cthulhu 32 45
2011-01-01T01:01:00Z Azatoth 17 87
2011-01-01T01:02:00Z Azatoth 43 99
2011-01-01T02:03:00Z Azatoth 12 53
timestamp page ... nb added deleted
2011-01-01T00:00:00Z Cthulhu 2 25 127
2011-01-01T01:00:00Z Cthulhu 1 32 45
2011-01-01T01:00:00Z Azatoth 2 60 186
2011-01-01T02:00:00Z Azatoth 112 53

16.2 as SQL

GROUP BY timestamp, page, nb, added, deleted
: nb = COUNT(1)
, added = SUM(added)
, deleted = SUM(deleted)

In practice can dramatically reduce the size (up to x100)

17 Segments

17.1 Sharding

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 120 45
2011-01-01T01:00:00Z Azatoth 1 30 106

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0O

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 112 45
2011-01-01T01:00:00Z Azatoth 2 30 80

12

17.2 Core Data Structure

Timestamp Dimensions Metrics
Timestamp M Page Username | Gender | City h| Characters Added | Characters Removed
2011-01-01T01:00:00Z ||| Justin Bieber | Boxer Male San Francisco ||| 1800 25
2011-01-01T01:00:00Z [[Justin Bieber | Reach Male Waterloo Il 42
2011-01-01T02:00:00Z || KeSha Helz Male Calgary Il 17
2011-01-01T02:00:00Z [[| Ke$Sha Xeno Male Taiyuan Il 170

o dictionary
e a bitmap for each value

e a list of the columns values encoded using the dictionary

17.3 Example

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, O, 1, 1]

bitmaps (one for each value of the column):

value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,0,1,1]

17.4 Example (multiple matches)

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, [0,1], 1, 1]

bitmaps (one for each value of the column):

value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,1,1,1]

17.5 Real-time ingestion

¢ Via Real-Time Node and Firehose

— No redundancy or HA, thus not recommended

¢ Via Indexing Service and Tranquility API
— Core API

13

— Integration with Streaming Frameworks
— HTTP Server
— Kafka Consumer

17.6 Batch Ingestion

o File based (HDFS, S3, ...)

17.7 Real-time Ingestion

Task 1: [Interval 1[Window]
Task 2: L]
___ >
time
18 Querying
18.1 Query types
e Group by: group by multiple dimensions
e Top N: like grouping by a single dimension
e Timeseries: without grouping over dimensions
e Search: Dimensions lookup
e Time Boundary: Find available data timeframe
e Metadata queries
18.2 Example(s)
{"queryType": "groupBy",
"dataSource": "druidtest",
"granularity": "all",
"dimensions": [],
"aggregations": [
{"type" . "count" , "name" : "I'OWS"},
{"type": "longSum", "name": "imps", "fieldName": "impressions"},

{"type": "doubleSum", "name": "wp", "fieldName": "wp"}
1,
"intervals": ["2010-01-01T00:00/2020-01-01T00"]}

14

18.3 Result

[{
"version" : "v1",
"timestamp" : "2010-01-01T00:00:00.000Z",
"event" : {
"imps" : 5,
"wp" : 15000.0,
"rows" : b5
}
}1

18.4 Caching

« Historical node level
— By segment
o Broker Level

— By segment and query
— groupBy is disabled on purpose!

e By default: local caching

19 Druid Components

19.1 Druid

¢ Real-time Nodes
Historical Nodes
e Broker Nodes

¢ Coordinator

o For indexing:

— Overlord
— Middle Manager

19.2 Also

o Deep Storage (S3, HDFS, ..)
o Metadata Storage (SQL)

o Load Balancer

o Cache

15

19.3 Coordinator

20

21

Real-time Nodes (pull data, index it)

Historical Nodes (keep old segments)

Broker Nodes (route queries to RT & Hist. nodes, merge)
Coordinator (manage segemnts)

For indexing:

— Overlord (distribute task to the middle manager)
— Middle Manager (execute tasks via Peons)

When not to choose Druid

Data is not time-series
Cardinality is very high
Number of dimensions is high
Setup cost must be avoided

Graphite (metrics)

Graphite

16

http://graphite.wikidot.com

22 Pivot (exploring data)

Wikipedia Edits (O]

DIMENSIONS FILTER Nov 23 - Nov 25 /\/\/ PINBOARD Edits v
SPuT Time (Hour) x Time Series | PAGE Q x
Wikipedia:Vandalismi 1,241.0
Edits: 6532k
* WikipediaAdministra 916.0
Utilisateur:ZéroBou/L: 871.0
UserCyde/list of_car 792.0
i Page ook 2015 Russian Sukhol 7290
e User & WikipediaWikiProjeer 5560
Wikipedia:Auskunft 5350
i Namespace
Attentats_du_13novi 4460
i Language
WikipedizAdministra 3720
1 Anonymous 200k

UserDeltaQuad/lUM. 351.0

Wikipedia-Requests f 339.0
MEASURES Wikipedia:ldschkand 311.0
WikipediaWartungsb 305.0

Edits

Wikipedia:WikiProjeci 3000
Delta 100k)

Listof people_from_ 291.0
Avg Delta Wikipedia:loschkand 279.0
Added Wikipédia:Signalemer 259.0
Avg Added Wikipediain_the_new 241.0
Deleted UserEranBou/Copyris 237.0

06AM 12PM O06PM TueZd O06AM 12PM O06PM Wed25 O06AM 12PM 06PM Thu26 Talk:2015_Russlan_Su 2340

Pivot

23 Caravel

(MANIIENERGY.USAGEI 07 | | Sankey * ENERGY SANKEY 2 s o pusn oo TR
EER v ovens

Source / Target © Electricty and heat
Metric 0
Row imit

sqLo (]

Custom WHERE clause ©

Custom HAVING couse ©

Filters 0 (-]

+ 400 FILTER

Caravel

17

https://github.com/implydata/pivot
https://github.com/airbnb/caravel

24 Conclusions

24.1 Precompute your time series?

24.2 Don’t reinvent it

e need a user facing API

e need time series on many dimensions
o need real-time

e big volume of data

24.3 Druid way is the right way!

Push in kafka

Add the right dimensions
Push in druid

777

Profit!

G o =

18

	Druid the Sales Pitch
	Intro
	Experience
	Real Time?
	Demand
	Reality

	Origin (PHP)
	1st Refactoring (Node.js)
	Return of Experience
	Return of Experience
	2nd Refactoring
	2nd Refactoring (FTW!)
	2nd Refactoring return of experience
	Demo
	Pre Considerations
	Discovered vs Invented
	In the End

	Druid
	Who?
	Goal
	Concepts
	Key Features
	Right for me?

	High Level Architecture
	Inspiration
	Index / Immutability
	Storage
	Specialized Nodes

	Druid vs X
	Elasticsearch
	Key/Value Stores (HBase/Cassandra/OpenTSDB)
	Spark
	SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)

	Data
	Concepts
	Indexing
	Loading
	Querying
	Segments

	Roll-up
	Example
	as SQL

	Segments
	Sharding
	Core Data Structure
	Example
	Example (multiple matches)
	Real-time ingestion
	Batch Ingestion
	Real-time Ingestion

	Querying
	Query types
	Example(s)
	Result
	Caching

	Druid Components
	Druid
	Also
	Coordinator

	When not to choose Druid
	Graphite (metrics)
	Pivot (exploring data)
	Caravel
	Conclusions
	Precompute your time series?
	Don't reinvent it
	Druid way is the right way!

