hglmandel/05_Mandelbulb/YGL.hs
Yann Esposito (Yogsototh) 570fea3b04 Normalized for light
2012-06-05 21:04:22 +02:00

343 lines
10 KiB
Haskell

-- The languages include needed because I wanted to use
-- (Point,Point,Point) instead of
-- data Point3D = Point3D (Point,Point,Point) deriving ...
{-
The module YGL will contains most boilerplate
And display details.
To make things even nicer, we should separate
this file in many different parts.
Typically separate the display function.
-}
module YGL (
-- Datas
Point
, Time
, Scalar
, Color
, Point3D
, makePoint3D -- helper (x,y,z) -> Point3D
, (-*<) -- scalar product on Point3D
, Function3D
-- Your world state must be an instance
-- of the DisplayableWorld type class
, DisplayableWorld (..)
-- Datas related to DisplayableWorld
, Camera (..)
, YObject (..)
, Box3D (..)
, makeBox
, hexColor
, makeColor
-- Datas related to user Input
, InputMap
, UserInput (Press,Ctrl,Alt,CtrlAlt)
, inputMapFromList
-- The main loop function to call
, yMainLoop) where
import Numeric (readHex)
import Graphics.Rendering.OpenGL hiding (Color)
import Graphics.UI.GLUT hiding (Color)
import Data.IORef
import qualified Data.Map as Map
import Control.Monad (when)
import Data.Maybe (isNothing)
{-- Things start to be complex here.
- Just take the time to follow me.
--}
-- | A 1D point
type Point = GLfloat
-- | A Scalar value
type Scalar = GLfloat
-- | The time type (currently its Int
type Time = Int
-- | A 3D Point mainly '(x,y,z)'
data Point3D = P (Point,Point,Point) deriving (Eq,Show,Read)
type Color = Color3 Scalar
xpoint :: Point3D -> Point
xpoint (P (x,_,_)) = x
ypoint :: Point3D -> Point
ypoint (P (_,y,_)) = y
zpoint :: Point3D -> Point
zpoint (P (_,_,z)) = z
makePoint3D :: (Point,Point,Point) -> Point3D
makePoint3D p = P p
instance Num Point3D where
(+) (P (ax,ay,az)) (P (bx,by,bz)) = P (ax+bx,ay+by,az+bz)
(-) (P (ax,ay,az)) (P (bx,by,bz)) = P (ax-bx,ay-by,az-bz)
(*) (P (ax,ay,az)) (P (bx,by,bz)) = P ( ay*bz - az*by
, az*bx - ax*bz
, ax*by - ay*bx )
abs (P (x,y,z)) = P (abs x,abs y, abs z)
signum (P (x,y,z)) = P (signum x, signum y, signum z)
fromInteger i = P (fromInteger i, 0, 0)
infixr 5 -*<
(-*<) :: Scalar -> Point3D -> Point3D
(-*<) s p = P (s*xpoint p, s*ypoint p, s*zpoint p)
toGLVector3 :: Point3D -> Vector3 GLfloat
toGLVector3 (P(x,y,z)) = Vector3 x y z
toGLVertex3 :: Point3D -> Vertex3 GLfloat
toGLVertex3 (P(x,y,z)) = Vertex3 x y z
toGLNormal3 :: Point3D -> Normal3 GLfloat
toGLNormal3 (P(x,y,z)) = Normal3 x y z
-- | The Box3D type represent a 3D bounding box
-- | Note if minPoint = (x,y,z) and maxPoint = (x',y',z')
-- | Then to have a non empty box you must have
-- | x<x' & y<y' & z<z'
data Box3D = Box3D {
minPoint :: Point3D
, maxPoint :: Point3D
, resolution :: Scalar }
makeBox :: (Point,Point,Point) -> (Point,Point,Point) -> Scalar -> Box3D
makeBox mini maxi res = Box3D {
minPoint = makePoint3D mini
, maxPoint = makePoint3D maxi
, resolution = res }
type Triangle3D = (Point3D,Point3D,Point3D,Color)
-- For a general purpose library we should add many other different atoms
-- corresponding to Quads for example.
data Atom = ColoredTriangle Triangle3D
type Function3D = Point -> Point -> Maybe (Point,Color)
data YObject = XYFunc Function3D Box3D
| Atoms [Atom]
atoms :: YObject -> [Atom]
atoms (XYFunc f b) = getObject3DFromShapeFunction f b
atoms (Atoms atomList) = atomList
-- | We decalre the input map type we need here
-- | It is our API
type InputMap worldType = Map.Map UserInput (worldType -> worldType)
data UserInput = Press Char | Ctrl Char | Alt Char | CtrlAlt Char
deriving (Eq,Ord,Show,Read)
-- | A displayable world
class DisplayableWorld world where
camera :: world -> Camera
camera _ = defaultCamera
lights :: world -> [Light]
lights _ = []
objects :: world -> [YObject]
objects _ = []
winTitle :: world -> String
winTitle _ = "YGL"
-- | the Camera type to know how to
-- | Transform the scene to see the right view.
data Camera = Camera {
camPos :: Point3D
, camDir :: Point3D
, camZoom :: Scalar }
defaultCamera :: Camera
defaultCamera = Camera {
camPos = makePoint3D (0,0,0)
, camDir = makePoint3D (0,0,0)
, camZoom = 1 }
-- Given a shape function and a delimited Box3D
-- return a list of Triangles to be displayed
getObject3DFromShapeFunction :: Function3D -> Box3D -> [Atom]
getObject3DFromShapeFunction shape box = do
x <- [xmin,xmin+res..xmax]
y <- [ymin,ymin+res..ymax]
let
neighbors = [(x,y),(x+res,y),(x+res,y+res),(x,y+res)]
-- zs are 3D points with found depth and color
-- zs :: [ (Point,Point,Point,Maybe (Point,Color) ]
zs = map (\(u,v) -> (u,v,shape u v)) neighbors
-- ps are 3D opengl points + color value
ps = zs
-- If the point diverged too fast, don't display it
if any (\(_,_,z) -> isNothing z) zs
then []
-- Draw two triangles
-- 3 - 2
-- | / |
-- 0 - 1
-- The order is important
else
[ makeAtom (ps!!0) (ps!!2) (ps!!1)
, makeAtom (ps!!0) (ps!!3) (ps!!2) ]
where
makeAtom (p0x,p0y,Just (p0z,c0)) (p1x,p1y,Just (p1z,_)) (p2x,p2y,Just (p2z,_)) =
ColoredTriangle (makePoint3D (p0x,p0y,p0z)
,makePoint3D (p1x,p1y,p1z)
,makePoint3D (p2x,p2y,p2z)
,c0)
makeAtom _ _ _ = error "Somethings wrong here"
-- some naming to make it
-- easier to read
xmin = xpoint $ minPoint box
xmax = xpoint $ maxPoint box
ymin = ypoint $ minPoint box
ymax = ypoint $ maxPoint box
res = resolution box
inputMapFromList :: (DisplayableWorld world) =>
[(UserInput,world -> world)] -> InputMap world
inputMapFromList = Map.fromList
{--
- We set our mainLoop function
- As you can see the code is _not_ pure
- and not even functionnal friendly!
- But when called,
- it will look like a standard function.
--}
yMainLoop :: (DisplayableWorld worldType) =>
InputMap worldType -- the mapping user input / world
-> (Time -> worldType -> worldType)
-> worldType -- the world state
-> IO () -- into IO () for obvious reason
yMainLoop inputActionMap
worldTranformer
world = do
-- The boilerplate
_ <- getArgsAndInitialize
initialDisplayMode $=
[WithDepthBuffer,DoubleBuffered,RGBMode]
_ <- createWindow $ winTitle world
depthFunc $= Just Less
windowSize $= Size 500 500
-- The state variables for the world (I know it feels BAD)
worldRef <- newIORef world
-- Action to call when waiting
idleCallback $= Just (idle worldTranformer worldRef)
-- the keyboard will update the world
keyboardMouseCallback $=
Just (keyboardMouse inputActionMap worldRef)
-- We generate one frame using the callback
displayCallback $= display worldRef
normalize $= Enabled
-- Lights
lighting $= Enabled
ambient (Light 0) $= Color4 0 0 0 1
diffuse (Light 0) $= Color4 0.5 0.5 0.5 1
specular (Light 0) $= Color4 1 1 1 1
position (Light 0) $= Vertex4 1 1 0 1
light (Light 0) $= Enabled
colorMaterial $= Just (Front,AmbientAndDiffuse)
materialDiffuse Front $= Color4 0.5 0.5 0.5 1
materialAmbient Front $= Color4 0.5 0.5 0.5 1
materialSpecular Front $= Color4 0.2 0.2 0.2 1
materialEmission Front $= Color4 0.3 0.3 0.3 1
materialShininess Front $= 90.0
-- We enter the main loop
mainLoop
-- When no user input entered do nothing
idle :: (Time -> worldType -> worldType) -> IORef worldType -> IO ()
idle worldTranformer world = do
w <- get world
t <- get elapsedTime
world $= worldTranformer t w
postRedisplay Nothing
-- Get User Input
-- both cleaner, terser and more expendable than the preceeding code
keyboardMouse :: InputMap a -> IORef a
-> Key -> KeyState -> Modifiers -> Position -> IO()
keyboardMouse input world key state _ _ =
when (state == Down) $
let
charFromKey (Char c) = c
-- To replace
charFromKey _ = '#'
transformator = Map.lookup (Press (charFromKey key)) input
in
mayTransform transformator
where
mayTransform Nothing = return ()
mayTransform (Just transform) = do
w <- get world
world $= transform w
-- The function that will display datas
display :: (HasGetter g, DisplayableWorld world) =>
g world -> IO ()
display worldRef = do
-- BEWARE UGLINESS!!!!
-- SHOULD NEVER MODIFY worldRef HERE!!!!
--
-- I SAID NEVER.
w <- get worldRef
-- NO REALLY, NEVER!!!!
-- If someone write a line starting by
-- w $= ... Shoot him immediately in the head
-- and refere to competent authorities
let cam = camera w
-- set the background color (dark solarized theme)
clearColor $= Color4 0 0.1686 0.2117 1
clear [ColorBuffer,DepthBuffer]
-- Transformation to change the view
loadIdentity -- reset any transformation
-- tranlate
translate $ toGLVector3 (camPos cam)
-- zoom
scale (camZoom cam) (camZoom cam) (camZoom cam)
-- rotate
rotate (xpoint (camDir cam)) $ Vector3 1.0 0.0 (0.0::GLfloat)
rotate (ypoint (camDir cam)) $ Vector3 0.0 1.0 (0.0::GLfloat)
rotate (zpoint (camDir cam)) $ Vector3 0.0 0.0 (1.0::GLfloat)
-- Now that all transformation were made
-- We create the object(s)
_ <- preservingMatrix $ mapM drawObject (objects w)
swapBuffers -- refresh screen
-- Hexa style colors
scalarFromHex :: String -> Scalar
scalarFromHex = (/256) . fst . head . readHex
hexColor :: [Char] -> Color
hexColor ('#':rd:ru:gd:gu:bd:bu:[]) = Color3 (scalarFromHex (rd:ru:[]))
(scalarFromHex (gd:gu:[]))
(scalarFromHex (bd:bu:[]))
hexColor ('#':r:g:b:[]) = hexColor ('#':r:r:g:g:b:b:[])
hexColor _ = error "Bad color!!!!"
makeColor :: Scalar -> Scalar -> Scalar -> Color
makeColor x y z = Color3 x y z
---
-- drawObject :: (YObject obj) => obj -> IO()
drawObject :: YObject -> IO()
drawObject shape = do
-- We will print only Triangles
renderPrimitive Triangles $ do
-- solarized base3 color
-- color $ hexColor "#fdf603"
mapM_ drawAtom (atoms shape)
-- simply draw an Atom
drawAtom :: Atom -> IO ()
drawAtom atom@(ColoredTriangle (p0,p1,p2,c)) = do
color c
normal $ toGLNormal3 (getNormal atom)
vertex $ toGLVertex3 p0
vertex $ toGLVertex3 p1
vertex $ toGLVertex3 p2
-- get the normal vector of an Atom
getNormal :: Atom -> Point3D
getNormal (ColoredTriangle (p0,p1,p2,_)) = (p1 - p0) * (p2 - p0)