elm/compiler/Type/State.hs
2013-07-26 21:18:44 +02:00

187 lines
6 KiB
Haskell

{-# LANGUAGE MultiWayIf #-}
module Type.State where
import Type.Type
import qualified Data.Map as Map
import qualified Data.List as List
import qualified Type.Environment as Env
import qualified Data.UnionFind.IO as UF
import Control.Monad.State
import Control.Applicative ((<$>),(<*>), Applicative)
import qualified Data.Traversable as Traversable
import Text.PrettyPrint as P
import SourceSyntax.PrettyPrint
-- Pool
-- Holds a bunch of variables
-- The rank of each variable is less than or equal to the pool's "maxRank"
-- The young pool exists to make it possible to identify these vars in constant time.
data Pool = Pool {
maxRank :: Int,
inhabitants :: [Variable]
} deriving Show
emptyPool = Pool { maxRank = outermostRank, inhabitants = [] }
-- Keeps track of the environment, type variable pool, and a list of errors
data SolverState = SS {
sEnv :: Map.Map String Variable,
sSavedEnv :: Map.Map String Variable,
sPool :: Pool,
sMark :: Int,
sErrors :: [IO P.Doc]
}
initialState = SS {
sEnv = Map.empty,
sSavedEnv = Map.empty,
sPool = emptyPool,
sMark = noMark + 1, -- The mark must never be equal to noMark!
sErrors = []
}
modifyEnv f = modify $ \state -> state { sEnv = f (sEnv state) }
modifyPool f = modify $ \state -> state { sPool = f (sPool state) }
addError message t1 t2 =
modify $ \state -> state { sErrors = err : sErrors state }
where
err = makeError <$> extraPretty t1 <*> extraPretty t2
makeError pt1 pt2 =
P.vcat [ P.text $ "Type error on line ???"
, if null message then empty else P.fsep . map P.text $ words message
, P.text " "
, P.text " Expected Type:" <+> pt1
, P.text " Actual Type:" <+> pt2 <> P.text "\n"
]
switchToPool pool = modifyPool (\_ -> pool)
getPool :: StateT SolverState IO Pool
getPool = sPool <$> get
getEnv :: StateT SolverState IO (Map.Map String Variable)
getEnv = sEnv <$> get
saveLocalEnv :: StateT SolverState IO ()
saveLocalEnv = do
env <- sEnv <$> get
modify $ \state -> state { sSavedEnv = env }
uniqueMark :: StateT SolverState IO Int
uniqueMark = do
state <- get
let mark = sMark state
put $ state { sMark = mark + 1 }
return mark
nextRankPool :: StateT SolverState IO Pool
nextRankPool = do
pool <- getPool
return $ Pool { maxRank = maxRank pool + 1, inhabitants = [] }
register :: Variable -> StateT SolverState IO Variable
register variable = do
modifyPool $ \pool -> pool { inhabitants = variable : inhabitants pool }
return variable
introduce :: Variable -> StateT SolverState IO Variable
introduce variable = do
pool <- getPool
liftIO $ UF.modifyDescriptor variable (\desc -> desc { rank = maxRank pool })
register variable
flatten :: Type -> StateT SolverState IO Variable
flatten term =
case term of
VarN v -> return v
TermN t -> do
flatStructure <- traverseTerm flatten t
pool <- getPool
var <- liftIO . UF.fresh $ Descriptor {
structure = Just flatStructure,
rank = maxRank pool,
flex = Flexible,
name = Nothing,
copy = Nothing,
mark = noMark
}
register var
makeInstance :: Variable -> StateT SolverState IO Variable
makeInstance var = do
alreadyCopied <- uniqueMark
freshVar <- makeCopy alreadyCopied var
restore alreadyCopied var
return freshVar
makeCopy :: Int -> Variable -> StateT SolverState IO Variable
makeCopy alreadyCopied variable = do
desc <- liftIO $ UF.descriptor variable
if | mark desc == alreadyCopied ->
case copy desc of
Just v -> return v
Nothing -> error "This should be impossible."
| rank desc /= noRank || flex desc == Constant ->
return variable
| otherwise -> do
pool <- getPool
newVar <- liftIO $ UF.fresh $ Descriptor {
structure = Nothing,
rank = maxRank pool,
mark = noMark,
flex = case flex desc of
Is s -> Is s
_ -> Flexible,
copy = Nothing,
name = case flex desc of
Rigid -> Nothing
_ -> name desc
}
register newVar
-- Link the original variable to the new variable. This lets us
-- avoid making multiple copies of the variable we are instantiating.
--
-- Need to do this before recursively copying the structure of
-- the variable to avoid looping on cyclic terms.
liftIO $ UF.modifyDescriptor variable $ \desc ->
desc { mark = alreadyCopied, copy = Just newVar }
-- Now we recursively copy the structure of the variable.
-- We have already marked the variable as copied, so we
-- will not repeat this work or crawl this variable again.
case structure desc of
Nothing -> return newVar
Just term -> do
newTerm <- traverseTerm (makeCopy alreadyCopied) term
liftIO $ UF.modifyDescriptor newVar $ \desc ->
desc { structure = Just newTerm }
return newVar
restore :: Int -> Variable -> StateT SolverState IO Variable
restore alreadyCopied variable = do
desc <- liftIO $ UF.descriptor variable
if mark desc /= alreadyCopied
then return variable
else do
restoredStructure <-
Traversable.traverse (traverseTerm (restore alreadyCopied)) (structure desc)
liftIO $ UF.modifyDescriptor variable $ \desc ->
desc { mark = noMark, rank = noRank, structure = restoredStructure }
return variable
traverseTerm :: (Monad f, Applicative f) => (a -> f b) -> Term1 a -> f (Term1 b)
traverseTerm f term =
case term of
App1 a b -> App1 <$> f a <*> f b
Fun1 a b -> Fun1 <$> f a <*> f b
Var1 x -> Var1 <$> f x
EmptyRecord1 -> return EmptyRecord1
Record1 fields ext ->
Record1 <$> Traversable.traverse (mapM f) fields <*> f ext