elm/libraries/Automaton.elm
2013-08-12 01:09:45 -07:00

101 lines
3.5 KiB
Elm

-- This library is a way to package up dynamic behavior. It makes it easier to
-- dynamically create dynamic components. See the [original release
-- notes](/blog/announce/version-0.5.0.elm) on this library to get a feel for how
-- it can be used.
module Automaton where
import open Basics
import Signal (lift,foldp,Signal)
import open List
import Maybe (Just, Nothing)
data Automaton a b = Step (a -> (Automaton a b, b))
-- Run an automaton on a given signal. The automaton steps forward
-- whenever the input signal updates.
run : Automaton a b -> b -> Signal a -> Signal b
run auto base inputs =
let step a (Step f, _) = f a
in lift (\(x,y) -> y) (foldp step (auto,base) inputs)
-- Step an automaton forward once with a given input.
step : a -> Automaton a b -> (Automaton a b, b)
step a (Step f) = f a
-- Compose two automatons, chaining them together.
(>>>) : Automaton a b -> Automaton b c -> Automaton a c
f >>> g =
Step (\a -> let (f', b) = step a f
(g', c) = step b g
in (f' >>> g', c))
-- Compose two automatons, chaining them together.
(<<<) : Automaton b c -> Automaton a b -> Automaton a c
g <<< f = f >>> g
-- Combine a list of automatons into a single automaton that produces a list.
combine : [Automaton a b] -> Automaton a [b]
combine autos =
Step (\a -> let (autos', bs) = unzip (map (step a) autos)
in (combine autos', bs))
-- Create an automaton with no memory. It just applies the given function to
-- every input.
pure : (a -> b) -> Automaton a b
pure f = Step (\x -> (pure f, f x))
-- Create an automaton with state. Requires an initial state and a step
-- function to step the state forward. For example, an automaton that counted
-- how many steps it has taken would look like this:
--
-- count = Automaton a Int
-- count = state 0 (\\_ c -> c+1)
--
-- It is a stateful automaton. The initial state is zero, and the step function
-- increments the state on every step.
state : b -> (a -> b -> b) -> Automaton a b
state s f = Step (\x -> let s' = f x s
in (state s' f, s'))
-- Create an automaton with hidden state. Requires an initial state and a
-- step function to step the state forward and produce an output.
hiddenState : s -> (a -> s -> (s,b)) -> Automaton a b
hiddenState s f = Step (\x -> let (s',out) = f x s
in (hiddenState s' f, out))
-- Count the number of steps taken.
count : Automaton a Int
count = state 0 (\_ c -> c + 1)
type Queue t = ([t],[t])
empty = ([],[])
enqueue x (en,de) = (x::en, de)
dequeue q = case q of
([],[]) -> Nothing
(en,[]) -> dequeue ([], reverse en)
(en,hd::tl) -> Just (hd, (en,tl))
-- Computes the running average of the last `n` inputs.
average : Int -> Automaton Float Float
average k =
let step n (ns,len,sum) =
if len == k then stepFull n (ns,len,sum)
else ((enqueue n ns, len+1, sum+n), (sum+n) / (toFloat len+1))
stepFull n (ns,len,sum) =
case dequeue ns of
Nothing -> ((ns,len,sum), 0)
Just (m,ns') -> let sum' = sum + n - m
in ((enqueue n ns', len, sum'), sum' / toFloat len)
in hiddenState (empty,0,0) step
{-- TODO(evancz): See the following papers for ideas on how to make this
library faster and better:
- Functional Reactive Programming, Continued
- Causal commutative arrows and their optimization
Speeding things up is a really low priority. Language features and
libraries with nice APIs and are way more important!
--}