elm/core-elm/Dict.elm
2012-10-21 04:52:46 -07:00

355 lines
9.1 KiB
Elm

module Dict (empty,singleton,insert
,lookup,findWithDefault
,remove,member
,foldl,foldr,map
,union,intersect,diff
,keys,values
,toList,fromList
) where
import Maybe (isJust)
data NColor = Red | Black
data RBTree k v = RBNode NColor k v (RBTree k v) (RBTree k v) | RBEmpty
empty = RBEmpty
raise = console.log
{-- Helpers for checking invariants
-- Check that the tree has an equal number of black nodes on each path
equal_pathLen t =
let path_numBlacks t =
case t of
{ RBEmpty -> 1
; RBNode col _ _ l r ->
let { bl = path_numBlacks l ; br = path_numBlacks r } in
if bl /= br || bl == 0-1 || br == 0-1
then 0-1
else bl + (if col == Red then 0 else 1)
}
in 0-1 /= path_numBlacks t
rootBlack t =
case t of
{ RBEmpty -> True
; RBNode Black _ _ _ _ -> True
; _ -> False }
redBlack_children t =
case t of
{ RBNode Red _ _ (RBNode Red _ _ _ _) _ -> False
; RBNode Red _ _ _ (RBNode Red _ _ _ _) -> False
; RBEmpty -> True
; RBNode _ _ _ l r -> redBlack_children l && redBlack_children r
}
findExtreme f t =
case t of
{ RBEmpty -> Nothing
; RBNode c k _ l r ->
case findExtreme f (f (l,r)) of
{ Nothing -> Just k
; Just k' -> Just k' }
}
findminRbt t = findExtreme fst t
findmaxRbt t = findExtreme snd t
-- "Option LT than"
-- Returns True if either xo or yo is Nothing
-- Otherwise returns the result of comparing the values using f
optionRelation f u xo yo =
case (xo,yo) of
{ (Nothing,_) -> u
; (_,Nothing) -> u
; (Just x, Just y) -> f x y }
olt xo yo = optionRelation (< ) True xo yo
olte xo yo = optionRelation (<=) True xo yo
ordered t =
case t of
{ RBEmpty -> True
; RBNode c k v l r ->
let (lmax,rmin) = (findmaxRbt l, findminRbt r) in
olte lmax (Just k) && olte (Just k) rmin && ordered l && ordered r
}
-- Check that there aren't any right red nodes in the tree *)
leftLeaning t =
case t of
{ RBEmpty -> True
; RBNode _ _ _ (RBNode Black _ _ _ _) (RBNode Red _ _ _ _) -> False
; RBNode _ _ _ RBEmpty (RBNode Red _ _ _ _) -> False
; RBNode _ _ _ l r -> (leftLeaning l) && (leftLeaning r)
}
invariants_hold t =
ordered t && rootBlack t && redBlack_children t &&
equal_pathLen t && leftLeaning t
--** End invariant helpers *****
--}
min t =
case t of
{ RBNode _ k v RBEmpty _ -> (k,v)
; RBNode _ _ _ l _ -> min l
; RBEmpty -> raise "(min RBEmpty) is not defined"
}
{--
max t =
case t of
{ RBNode _ k v _ RBEmpty -> (k,v)
; RBNode _ _ _ _ r -> max r
; RBEmpty -> raise "(max RBEmpty) is not defined"
}
--}
lookup k t =
case t of
{ RBEmpty -> Nothing
; RBNode _ k' v l r ->
case compare k k' of
{ LT -> lookup k l
; EQ -> Just v
; GT -> lookup k r }
}
findWithDefault base k t =
case t of
{ RBEmpty -> base
; RBNode _ k' v l r ->
case compare k k' of
{ LT -> findWithDefault base k l
; EQ -> v
; GT -> findWithDefault base k r }
}
{--
find k t =
case t of
{ RBEmpty -> raise "Key was not found in dictionary!"
; RBNode _ k' v l r ->
case compare k k' of
{ LT -> find k l
; EQ -> v
; GT -> find k r }
}
--}
-- Does t contain k?
member k t = isJust $ lookup k t
rotateLeft t =
case t of
{ RBNode cy ky vy a (RBNode cz kz vz b c) -> RBNode cy kz vz (RBNode Red ky vy a b) c
; _ -> raise "rotateLeft of a node without enough children" }
-- rotateRight -- the reverse, and
-- makes Y have Z's color, and makes Z Red.
rotateRight t =
case t of
{ RBNode cz kz vz (RBNode cy ky vy a b) c -> RBNode cz ky vy a (RBNode Red kz vz b c)
; _ -> raise "rotateRight of a node without enough children" }
rotateLeftIfNeeded t =
case t of
{ RBNode _ _ _ _ (RBNode Red _ _ _ _) -> rotateLeft t
; _ -> t }
rotateRightIfNeeded t =
case t of
{ RBNode _ _ _ (RBNode Red _ _ (RBNode Red _ _ _ _) _) _ -> rotateRight t
; _ -> t }
otherColor c = case c of { Red -> Black ; Black -> Red }
color_flip t =
case t of
{ RBNode c1 bk bv (RBNode c2 ak av la ra) (RBNode c3 ck cv lc rc) ->
RBNode (otherColor c1) bk bv
(RBNode (otherColor c2) ak av la ra)
(RBNode (otherColor c3) ck cv lc rc)
; _ -> raise "color_flip called on a RBEmpty or RBNode with a RBEmpty child" }
color_flipIfNeeded t =
case t of
{ RBNode _ _ _ (RBNode Red _ _ _ _) (RBNode Red _ _ _ _) -> color_flip t
; _ -> t }
fixUp t = color_flipIfNeeded (rotateRightIfNeeded (rotateLeftIfNeeded t))
ensureBlackRoot t =
case t of
{ RBNode Red k v l r -> RBNode Black k v l r
; _ -> t }
-- Invariant: t is a valid left-leaning rb tree *)
insert k v t =
let ins t =
case t of
{ RBEmpty -> RBNode Red k v RBEmpty RBEmpty
; RBNode c k' v' l r ->
let h = case compare k k' of
{ LT -> RBNode c k' v' (ins l) r
; EQ -> RBNode c k' v l r -- replace
; GT -> RBNode c k' v' l (ins r) }
in fixUp h }
in ensureBlackRoot (ins t)
{--
if not (invariants_hold t) then
raise "invariants broken before insert"
else (let new_t = ensureBlackRoot (ins t) in
if not (invariants_hold new_t) then
raise "invariants broken after insert"
else new_t)
--}
singleton k v = insert k v RBEmpty
isRed t =
case t of
{ RBNode Red _ _ _ _ -> True
; _ -> False }
isRedLeft t =
case t of
{ RBNode _ _ _ (RBNode Red _ _ _ _) _ -> True
; _ -> False }
isRedLeftLeft t =
case t of
{ RBNode _ _ _ (RBNode _ _ _ (RBNode Red _ _ _ _) _) _ -> True
; _ -> False }
isRedRight t =
case t of
{ RBNode _ _ _ _ (RBNode Red _ _ _ _) -> True
; _ -> False }
isRedRightLeft t =
case t of
{ RBNode _ _ _ _ (RBNode _ _ _ (RBNode Red _ _ _ _) _) -> True
; _ -> False }
moveRedLeft t =
let t' = color_flip t in
case t' of
{ RBNode c k v l r ->
case r of
{ RBNode _ _ _ (RBNode Red _ _ _ _) _ ->
color_flip (rotateLeft (RBNode c k v l (rotateRight r)))
; _ -> t' }
; _ -> t' }
moveRedRight t =
let t' = color_flip t in
if isRedLeftLeft t' then color_flip (rotateRight t') else t'
moveRedLeftIfNeeded t =
if not (isRedLeft t) && not (isRedLeftLeft t)
then moveRedLeft t
else t
moveRedRightIfNeeded t =
if not (isRedRight t) && not (isRedRightLeft t)
then moveRedRight t
else t
deleteMin t =
let del t =
case t of
{ RBNode _ _ _ RBEmpty _ -> RBEmpty
; _ -> let t' = moveRedLeftIfNeeded t in
case t' of
{ RBNode c k v l r -> fixUp (RBNode c k v (del l) r)
; RBEmpty -> RBEmpty }
}
in ensureBlackRoot (del t)
{--
deleteMax t =
let del t =
let t' = if isRedLeft t then rotateRight t else t in
case t' of
{ RBNode _ _ _ _ RBEmpty -> RBEmpty
; _ -> let t'' = moveRedRightIfNeeded t' in
case t'' of
{ RBNode c k v l r -> fixUp (RBNode c k v l (del r))
; RBEmpty -> RBEmpty } }
in ensureBlackRoot (del t)
--}
remove k t =
let eq_and_noRightNode t = case t of { RBNode _ k' _ _ RBEmpty -> k == k' ; _ -> False } in
let eq t = case t of { RBNode _ k' _ _ _ -> k == k' ; _ -> False } in
let delLT t = let t' = moveRedLeftIfNeeded t in
case t' of
{ RBNode c k' v l r -> fixUp (RBNode c k' v (del l) r)
; RBEmpty -> raise "delLT on RBEmpty" }
in
let delEQ t = case t of -- Replace with successor
{ RBNode c _ _ l r ->
let (k',v') = min r in
fixUp (RBNode c k' v' l (deleteMin r))
; RBEmpty -> raise "delEQ called on a RBEmpty" }
in
let delGT t = case t of
{ RBNode c k' v l r -> fixUp (RBNode c k' v l (del r))
; RBEmpty -> raise "delGT called on a RBEmpty" }
in
let del t = case t of
{ RBEmpty -> RBEmpty
; RBNode _ k' _ _ _ ->
if k < k' then delLT t
else (let t' = if isRedLeft t then rotateRight t else t in
if eq_and_noRightNode t' then RBEmpty
else (let t = moveRedRightIfNeeded t in
if eq t then delEQ t else delGT t)) }
in ensureBlackRoot (del t)
{--
if not (invariants_hold t) then
raise "invariants broken before remove"
else (let t' = ensureBlackRoot (del t) in
if invariants_hold t' then t' else
raise "invariants broken after remove")
--}
map f t =
case t of
{ RBEmpty -> RBEmpty
; RBNode c k v l r -> RBNode c k (f v) (map f l) (map f r)
}
foldl f acc t =
case t of
{ RBEmpty -> acc
; RBNode _ k v l r -> foldl f (f k v (foldl f acc l)) r
}
foldr f acc t =
case t of
{ RBEmpty -> acc
; RBNode _ k v l r -> foldr f (f k v (foldr f acc r)) l
}
union t1 t2 = foldl insert t2 t1
intersect t1 t2 = foldl (\k v t -> if k `member` t2 then insert k v t else t) empty t1
diff t1 t2 = foldl (\k _ t -> remove k t) t1 t2
keys t = foldl (\k _ acc -> k : acc) [] t
values t = foldl (\_ -> (:)) [] t
toList t = foldl (\k v acc -> (k,v) : acc) [] t
fromList assocs = List.foldl (uncurry insert) empty assocs