elm/libraries/Dict.elm
Mads Flensted-Urech 441d09c4a7 Docs update: copy documentation from elm-lang.org
- Copy documentation from elm-lang.org (dev branch) to .elm files in
libraries folder
- Added TODO's for stuff that was not found in 0.8 version
- Added Review TODO in json.elm
2013-03-24 13:45:56 +01:00

395 lines
11 KiB
Elm

module Dict (empty,singleton,insert
,lookup,findWithDefault
,remove,member
,foldl,foldr,map
,union,intersect,diff
,keys,values
,toList,fromList
) where
import Maybe as Maybe
import Native.Error as Error
import List as List
data NColor = Red | Black
data Dict k v = Node NColor k v (Dict k v) (Dict k v) | Empty
-- Create an empty dictionary.
empty : Dict k v
empty = Empty
{-- Helpers for checking invariants
-- Check that the tree has an equal number of black nodes on each path
equal_pathLen t =
let path_numBlacks t =
case t of
{ Empty -> 1
; Node col _ _ l r ->
let { bl = path_numBlacks l ; br = path_numBlacks r } in
if bl /= br || bl == 0-1 || br == 0-1
then 0-1
else bl + (if col == Red then 0 else 1)
}
in 0-1 /= path_numBlacks t
rootBlack t =
case t of
{ Empty -> True
; Node Black _ _ _ _ -> True
; _ -> False }
redBlack_children t =
case t of
{ Node Red _ _ (Node Red _ _ _ _) _ -> False
; Node Red _ _ _ (Node Red _ _ _ _) -> False
; Empty -> True
; Node _ _ _ l r -> redBlack_children l && redBlack_children r
}
findExtreme f t =
case t of
{ Empty -> Nothing
; Node c k _ l r ->
case findExtreme f (f (l,r)) of
{ Nothing -> Just k
; Just k' -> Just k' }
}
findminRbt t = findExtreme fst t
findmaxRbt t = findExtreme snd t
-- "Option LT than"
-- Returns True if either xo or yo is Nothing
-- Otherwise returns the result of comparing the values using f
optionRelation f u xo yo =
case (xo,yo) of
{ (Nothing,_) -> u
; (_,Nothing) -> u
; (Just x, Just y) -> f x y }
olt xo yo = optionRelation (< ) True xo yo
olte xo yo = optionRelation (<=) True xo yo
ordered t =
case t of
{ Empty -> True
; Node c k v l r ->
let (lmax,rmin) = (findmaxRbt l, findminRbt r) in
olte lmax (Just k) && olte (Just k) rmin && ordered l && ordered r
}
-- Check that there aren't any right red nodes in the tree *)
leftLeaning t =
case t of
{ Empty -> True
; Node _ _ _ (Node Black _ _ _ _) (Node Red _ _ _ _) -> False
; Node _ _ _ Empty (Node Red _ _ _ _) -> False
; Node _ _ _ l r -> (leftLeaning l) && (leftLeaning r)
}
invariants_hold t =
ordered t && rootBlack t && redBlack_children t &&
equal_pathLen t && leftLeaning t
--** End invariant helpers *****
--}
min : Dict k v -> (k,v)
min t =
case t of
Node _ k v Empty _ -> (k,v)
Node _ _ _ l _ -> min l
Empty -> Error.raise "(min Empty) is not defined"
{--
max t =
case t of
{ Node _ k v _ Empty -> (k,v)
; Node _ _ _ _ r -> max r
; Empty -> Error.raise "(max Empty) is not defined"
}
--}
-- Lookup the value associated with a key.
lookup : k -> Dict k v -> Maybe v
lookup k t =
case t of
Empty -> Nothing
Node _ k' v l r ->
case compare k k' of
LT -> lookup k l
EQ -> Just v
GT -> lookup k r
-- Find the value associated with a key. If the key is not found, return the default value.
findWithDefault : v -> k -> Dict k v -> v
findWithDefault base k t =
case t of
Empty -> base
Node _ k' v l r ->
case compare k k' of
LT -> findWithDefault base k l
EQ -> v
GT -> findWithDefault base k r
{--
-- Find the value associated with a key. If the key is not found, there will be a runtime error.
find k t =
case t of
{ Empty -> Error.raise "Key was not found in dictionary!"
; Node _ k' v l r ->
case compare k k' of
{ LT -> find k l
; EQ -> v
; GT -> find k r }
}
--}
-- Determine if a key is in a dictionary.
member : k -> Dict k v -> Bool
-- Does t contain k?
member k t = Maybe.isJust $ lookup k t
rotateLeft : Dict k v -> Dict k v
rotateLeft t =
case t of
Node cy ky vy a (Node cz kz vz b c) -> Node cy kz vz (Node Red ky vy a b) c
_ -> Error.raise "rotateLeft of a node without enough children"
-- rotateRight -- the reverse, and
-- makes Y have Z's color, and makes Z Red.
rotateRight : Dict k v -> Dict k v
rotateRight t =
case t of
Node cz kz vz (Node cy ky vy a b) c -> Node cz ky vy a (Node Red kz vz b c)
_ -> Error.raise "rotateRight of a node without enough children"
rotateLeftIfNeeded : Dict k v -> Dict k v
rotateLeftIfNeeded t =
case t of
Node _ _ _ _ (Node Red _ _ _ _) -> rotateLeft t
_ -> t
rotateRightIfNeeded : Dict k v -> Dict k v
rotateRightIfNeeded t =
case t of
Node _ _ _ (Node Red _ _ (Node Red _ _ _ _) _) _ -> rotateRight t
_ -> t
otherColor c = case c of { Red -> Black ; Black -> Red }
color_flip : Dict k v -> Dict k v
color_flip t =
case t of
Node c1 bk bv (Node c2 ak av la ra) (Node c3 ck cv lc rc) ->
Node (otherColor c1) bk bv
(Node (otherColor c2) ak av la ra)
(Node (otherColor c3) ck cv lc rc)
_ -> Error.raise "color_flip called on a Empty or Node with a Empty child"
color_flipIfNeeded : Dict k v -> Dict k v
color_flipIfNeeded t =
case t of
Node _ _ _ (Node Red _ _ _ _) (Node Red _ _ _ _) -> color_flip t
_ -> t
fixUp t = color_flipIfNeeded (rotateRightIfNeeded (rotateLeftIfNeeded t))
ensureBlackRoot : Dict k v -> Dict k v
ensureBlackRoot t =
case t of
Node Red k v l r -> Node Black k v l r
_ -> t
-- Insert a key-value pair into a dictionary. Replaces value when there is a collision.
-- Invariant: t is a valid left-leaning rb tree *)
insert : k -> v -> Dict k v -> Dict k v
insert k v t =
let ins t =
case t of
Empty -> Node Red k v Empty Empty
Node c k' v' l r ->
let h = case compare k k' of
LT -> Node c k' v' (ins l) r
EQ -> Node c k' v l r -- replace
GT -> Node c k' v' l (ins r)
in fixUp h
in ensureBlackRoot (ins t)
{--
if not (invariants_hold t) then
Error.raise "invariants broken before insert"
else (let new_t = ensureBlackRoot (ins t) in
if not (invariants_hold new_t) then
Error.raise "invariants broken after insert"
else new_t)
--}
-- Create a dictionary with one key-value pair.
singleton : k -> v -> Dict k v
singleton k v = insert k v Empty
isRed : Dict k v -> Bool
isRed t =
case t of
Node Red _ _ _ _ -> True
_ -> False
isRedLeft : Dict k v -> Bool
isRedLeft t =
case t of
Node _ _ _ (Node Red _ _ _ _) _ -> True
_ -> False
isRedLeftLeft : Dict k v -> Bool
isRedLeftLeft t =
case t of
Node _ _ _ (Node _ _ _ (Node Red _ _ _ _) _) _ -> True
_ -> False
isRedRight : Dict k v -> Bool
isRedRight t =
case t of
Node _ _ _ _ (Node Red _ _ _ _) -> True
_ -> False
isRedRightLeft : Dict k v -> Bool
isRedRightLeft t =
case t of
Node _ _ _ _ (Node _ _ _ (Node Red _ _ _ _) _) -> True
_ -> False
moveRedLeft : Dict k v -> Dict k v
moveRedLeft t =
let t' = color_flip t in
case t' of
Node c k v l r ->
case r of
Node _ _ _ (Node Red _ _ _ _) _ ->
color_flip (rotateLeft (Node c k v l (rotateRight r)))
_ -> t'
_ -> t'
moveRedRight : Dict k v -> Dict k v
moveRedRight t =
let t' = color_flip t in
if isRedLeftLeft t' then color_flip (rotateRight t') else t'
moveRedLeftIfNeeded : Dict k v -> Dict k v
moveRedLeftIfNeeded t =
if not (isRedLeft t) && not (isRedLeftLeft t) then moveRedLeft t else t
moveRedRightIfNeeded : Dict k v -> Dict k v
moveRedRightIfNeeded t =
if not (isRedRight t) && not (isRedRightLeft t) then moveRedRight t else t
deleteMin : Dict k v -> Dict k v
deleteMin t =
let del t =
case t of
Node _ _ _ Empty _ -> Empty
_ -> case moveRedLeftIfNeeded t of
Node c k v l r -> fixUp (Node c k v (del l) r)
Empty -> Empty
in ensureBlackRoot (del t)
{--
deleteMax t =
let del t =
let t' = if isRedLeft t then rotateRight t else t in
case t' of
{ Node _ _ _ _ Empty -> Empty
; _ -> let t'' = moveRedRightIfNeeded t' in
case t'' of
{ Node c k v l r -> fixUp (Node c k v l (del r))
; Empty -> Empty } }
in ensureBlackRoot (del t)
--}
-- Remove a key-value pair from a dictionary. If the key is not found, no changes are made.
remove : k -> Dict k v -> Dict k v
remove k t =
let eq_and_noRightNode t =
case t of { Node _ k' _ _ Empty -> k == k' ; _ -> False }
eq t = case t of { Node _ k' _ _ _ -> k == k' ; _ -> False }
delLT t = case moveRedLeftIfNeeded t of
Node c k' v l r -> fixUp (Node c k' v (del l) r)
Empty -> Error.raise "delLT on Empty"
delEQ t = case t of -- Replace with successor
Node c _ _ l r -> let (k',v') = min r in
fixUp (Node c k' v' l (deleteMin r))
Empty -> Error.raise "delEQ called on a Empty"
delGT t = case t of
Node c k' v l r -> fixUp (Node c k' v l (del r))
Empty -> Error.raise "delGT called on a Empty"
del t = case t of
Empty -> Empty
Node _ k' _ _ _ ->
if k < k' then delLT t else
let u = if isRedLeft t then rotateRight t else t in
if eq_and_noRightNode u then Empty else
let t' = moveRedRightIfNeeded t in
if eq t' then delEQ t' else delGT t'
in if member k t then ensureBlackRoot (del t) else t
{--
if not (invariants_hold t) then
Error.raise "invariants broken before remove"
else (let t' = ensureBlackRoot (del t) in
if invariants_hold t' then t' else
Error.raise "invariants broken after remove")
--}
-- Apply a function to all values in a dictionary.
map : (a -> b) -> Dict k a -> Dict k b
map f t =
case t of
Empty -> Empty
Node c k v l r -> Node c k (f v) (map f l) (map f r)
-- Fold over the key-value pairs in a dictionary, in order from lowest key to highest key.
foldl : (k -> v -> b -> b) -> b -> Dict k v -> b
foldl f acc t =
case t of
Empty -> acc
Node _ k v l r -> foldl f (f k v (foldl f acc l)) r
-- Fold over the key-value pairs in a dictionary, in order from highest key to lowest key.
foldr : (k -> v -> b -> b) -> b -> Dict k v -> b
foldr f acc t =
case t of
Empty -> acc
Node _ k v l r -> foldr f (f k v (foldr f acc r)) l
-- Combine two dictionaries. If there is a collision, preference is given to the first dictionary.
union : Dict k v -> Dict k v -> Dict k v
union t1 t2 = foldl insert t2 t1
-- Keep a key-value pair when its key appears in the second dictionary. Preference is given to values in the first dictionary.
intersect : Dict k v -> Dict k v -> Dict k v
intersect t1 t2 =
let combine k v t = if k `member` t2 then insert k v t else t
in foldl combine empty t1
-- Keep a key-value pair when its key does not appear in the second dictionary. Preference is given to the first dictionary.
diff : Dict k v -> Dict k v -> Dict k v
diff t1 t2 = foldl (\k v t -> remove k t) t1 t2
-- Get all of the keys in a dictionary.
keys : Dict k v -> [k]
keys t = foldr (\k v acc -> k :: acc) [] t
-- Get all of the values in a dictionary.
values : Dict k v -> [v]
values t = foldr (\k v acc -> v :: acc) [] t
-- Convert a dictionary into an association list of key-value pairs.
toList : Dict k v -> [(k,v)]
toList t = foldr (\k v acc -> (k,v) :: acc) [] t
-- Convert an association list into a dictionary.
fromList : [(k,v)] -> Dict k v
fromList assocs = List.foldl (uncurry insert) empty assocs