elm/compiler/Types/Constrain.hs

319 lines
12 KiB
Haskell

module Types.Constrain (constrain) where
import Control.Arrow (second)
import Control.Monad (liftM,mapM,zipWithM,foldM)
import Control.Monad.State (evalState)
import Data.Char (isDigit)
import Data.List (foldl',sort,group,isPrefixOf,intercalate,isSuffixOf)
import qualified Data.Map as Map
import qualified Data.Set as Set
import Ast
import Context
import Guid
import qualified Libraries as Libraries
import Types.Types
import Types.Substitutions
beta = VarT `liftM` guid
unionA = Map.unionWith (++)
unionsA = Map.unionsWith (++)
getAliases imports hints = hints ++ concatMap aliasesFrom imports
where aliasesFrom (name,method) =
let values = concatMap (getValue name) hints
in case method of
As alias -> if alias == name then [] else
map (\(n,t) -> (alias ++ "." ++ n, t)) values
Hiding vs -> filter (\(n,t) -> n `notElem` vs) values
Importing vs -> filter (\(n,t) -> n `elem` vs) values
getValue inModule (name,tipe) =
case inModule `isPrefixOf` name of
True -> [ (drop (length inModule + 1) name, tipe) ]
False -> []
findAmbiguous hints hints' assumptions continue =
let potentialDups = map head . filter (\g -> length g > 1) . group $ sort hints'
dups = filter (\k -> Map.member k assumptions) potentialDups
in case dups of
n:_ -> return . Left $ "Error: Ambiguous occurrence of '" ++ n ++
"' could refer to " ++ intercalate ", " (filter (isSuffixOf n) hints)
_ -> continue
mergeSchemes :: [Map.Map String Scheme]
-> GuidCounter (TVarMap, ConstraintSet, Map.Map String Scheme)
mergeSchemes schmss = do (ass,css,sss) <- unzip3 `liftM` mapM split kvs
return (Map.unions ass, Set.unions css, Map.unions sss)
where
kvs = Map.toList $ Map.unionsWith (++) (map (Map.map (:[])) schmss)
split (k,vs) =
let ps = zipWith (\s v -> (s++k,v)) (map (flip replicate '_') [0..]) vs
eq t u = C (Just $ msg ++ k) NoSpan (VarT t :=: VarT u)
msg = "the definition of "
in do xs <- mapM (\_ -> guid) vs
return ( Map.fromList $ zip (map fst ps) (map (:[]) xs)
, case xs of
t:ts -> Set.fromList $ zipWith eq (t:ts) ts
[] -> Set.empty
, Map.fromList ps )
constrain typeHints (Module _ _ imports stmts) = do
(ass,css,schemess) <- unzip3 `liftM` mapM stmtGen stmts
hints <- typeHints
(as', cs', schemes) <- mergeSchemes schemess
let constraints = Set.unions (cs':css)
as = unionsA (as':ass)
aliasHints = getAliases (imports ++ Libraries.prelude) hints
allHints = Map.union schemes (Map.fromList aliasHints)
insert as n = do v <- guid; return $ Map.insertWith' (\_ x -> x) n [v] as
assumptions <- foldM insert as (Map.keys schemes)
findAmbiguous (map fst hints) (map fst aliasHints) assumptions $ do
let f k s vs = map (\v -> C (Just k) NoSpan $ v :<<: s) vs
cs = concat . Map.elems $ Map.intersectionWithKey f allHints assumptions
escapees = Map.keys $ Map.difference assumptions allHints
return $ case escapees of
_ -> Right (Set.toList constraints ++ cs)
--_ -> Left ("Undefined variable(s): " ++ intercalate ", " escapees)
type TVarMap = Map.Map String [X]
type ConstraintSet = Set.Set (Context Constraint)
ctx e span = C (Just $ show e) span
gen :: CExpr -> GuidCounter (TVarMap, ConstraintSet, Type)
gen (C _ span expr) =
let ctx' = C (Just $ show expr) span in
case expr of
Var x ->
do b <- guid
return (Map.singleton x [b], Set.empty, VarT b)
App e1 e2 ->
do (a1,c1,t1) <- gen e1
(a2,c2,t2) <- gen e2
b <- beta
return ( unionA a1 a2
, Set.unions [c1,c2
,Set.singleton . ctx' $ t1 :=: (LambdaT t2 b)]
, b )
Lambda x e ->
do (a,c,t) <- gen e
b <- beta
v <- guid
return ( Map.delete x a
, Set.union c . Set.fromList .
map (\x -> ctx' $ VarT x :=: b) $
Map.findWithDefault [v] x a
, LambdaT b t )
Let defs e ->
do (as,cs,t) <- gen e
(ass, schemes) <- liftM unzip (mapM defScheme defs)
let assumptions = unionsA (as:ass)
getName d = case d of FnDef f _ _ -> f
OpDef op _ _ _ -> op
names = map getName defs
genCs name s = do
v <- guid
let vs = Map.findWithDefault [v] name assumptions
return $ map (\x -> ctx name span $ x :<<: s) vs
cs' <- zipWithM genCs names schemes
return ( foldr Map.delete assumptions names
, Set.union (Set.fromList . concat $ cs') cs
, t )
Case e cases ->
do (as,cs,t) <- gen e
(ass,css,ts) <- liftM unzip3 $ mapM (caseGen t) cases
return ( unionsA $ as:ass
, let cases' = map snd cases
ctxs = zipWith epos cases' (tail cases')
csts = zipWith (:=:) ts (tail ts)
cs' = Set.fromList (zipWith ($) ctxs csts)
in Set.unions $ cs' : cs : css
, head ts)
If e1 e2 e3 ->
do (a1,c1,t1) <- gen e1
(a2,c2,t2) <- gen e2
(a3,c3,t3) <- gen e3
return ( unionsA [a1,a2,a3]
, let c4 = Set.fromList [ ctx e1 span (t1 :=: bool)
, ctx' (t2 :=: t3) ]
in Set.unions [c1,c2,c3,c4]
, t2 )
Data name es ->
gen $ foldl' (\f x -> epos f x $ App f x) (ctx' $ Var name) es
Binop op e1 e2 ->
gen $ ctx' (App (ctx' $ App (ctx' $ Var op) e1) e2)
Access e label ->
do (as,cs,rtype) <- gen e
t <- beta
rtype' <- beta
let fs = Map.singleton label [t]
c = (ctx' (RecordT fs rtype' :=: rtype))
return (as, Set.insert c cs, t)
Remove e x ->
do (as,cs,rtype) <- gen e
t <- beta
rtype' <- beta
let c = (ctx' (RecordT (Map.singleton x [t]) rtype' :=: rtype))
return (as, Set.insert c cs, rtype')
Insert e x v ->
do (eas,ecs,etype) <- gen e
(vas,vcs,vtype) <- gen v
return ( unionA eas vas
, Set.union ecs vcs
, RecordT (Map.singleton x [vtype]) etype )
Modify record fields ->
do (ras,rcs,rtype) <- gen record
(ass,css,newTs) <- unzip3 `liftM` mapM gen (map snd fields)
oldTs <- mapM (\_ -> beta) fields
rtype' <- beta
let rT ts = RecordT (recordT (zip (map fst fields) ts)) rtype'
c = Set.singleton (ctx' (rtype :=: rT oldTs))
return ( unionsA (ras:ass), Set.unions (c : rcs : css), rT newTs )
Record fields ->
let insert label tipe = Map.insertWith (++) label [tipe]
getScheme (f,args,e) = do
(as, _, (label, Forall _ cs tipe)) <- defGenHelp f args e
return (as, cs, insert label tipe)
in do (ass, css, fs) <- unzip3 `liftM` mapM getScheme fields
return ( unionsA ass
, Set.fromList (concat css)
, RecordT (foldr ($) Map.empty fs) EmptyRecord )
Range e1@(C w1 s1 _) e2@(C w2 s2 _) ->
do (a1,c1,t1) <- gen e1
(a2,c2,t2) <- gen e2
return ( unionsA [a1,a2]
, Set.unions [ c1, c2, Set.fromList [ C w1 s1 (t1 :=: int)
, C w1 s2 (t2 :=: int) ] ]
, listOf int )
MultiIf ps -> do (ass,css,t:ts) <- unzip3 `liftM` mapM genPair ps
let cs = Set.fromList (map (ctx' . (t :=:)) ts)
return (unionsA ass, Set.unions (cs:css), t)
where genPair (b@(C t s _),e) = do
(a1,c1,t1) <- gen b
(a2,c2,t2) <- gen e
return ( unionsA [a1,a2]
, Set.unions [ c1, c2
, Set.singleton (C t s (t1 :=: bool)) ]
, t2 )
IntNum _ -> do t <- beta
return (Map.empty, Set.singleton (ctx' $ t :<: number), t)
FloatNum _ -> primitive float
Chr _ -> primitive char
Str _ -> primitive string
Boolean _ -> primitive bool
Markdown _ -> primitive element
primitive :: Type -> GuidCounter (TVarMap, ConstraintSet, Type)
primitive t = return (Map.empty, Set.empty, t)
caseGen :: Type
-> (Pattern, CExpr)
-> GuidCounter (TVarMap, ConstraintSet, Type)
caseGen tipe (p, ce@(C _ span e)) = do
(as ,cs ,t) <- gen ce
(as',cs',_) <- patternGen (ctx p span) tipe as p
return ( as', Set.union cs cs', t )
patternGen :: (Constraint -> Context Constraint)
-> Type -- Type of e in `case e of ...`
-> TVarMap
-> Pattern
-> GuidCounter (TVarMap, ConstraintSet, Type)
patternGen ctxt tipe as pattern =
case pattern of
PAnything -> do b <- beta ; return ( as, Set.empty, b )
PVar v -> do
b <- beta
let cs = map (ctxt . (b :=:) . VarT) (Map.findWithDefault [] v as)
return ( Map.delete v as, Set.fromList (ctxt (b :=: tipe) : cs), b )
PData name ps -> do
constr <- guid
output <- beta
let step (as,cs,tipe) p = do b <- beta
(as',cs',t) <- patternGen ctxt b as p
return (as', Set.union cs cs', t ==> tipe)
(as',cs, t) <- foldM step (as,Set.empty,tipe) (reverse ps)
return ( Map.insert name [constr] as'
, Set.insert (ctxt (VarT constr :=: t)) cs
, output )
PRecord fs ->
do pairs <- mapM (\f -> do b <- beta; return (f,b)) fs
b <- beta
let t = RecordT (Map.fromList $ map (second (:[])) pairs) b
mkCs (name,tipe) = map (ctxt . (tipe :=:) . VarT)
(Map.findWithDefault [] name as)
return ( foldr Map.delete as fs
, Set.fromList (ctxt (t :=: tipe) : concatMap mkCs pairs)
, t )
defScheme :: Def -> GuidCounter (Map.Map String [X], Scheme)
defScheme def = do (as,cs,hint) <- defGen def
return ( as, snd hint )
defGen def = case def of
FnDef f args e -> defGenHelp f args e
OpDef op a1 a2 e -> defGenHelp op [a1,a2] e
defGenHelp name args e = do
argDict <- mapM (\a -> liftM ((,) a) guid) args
(as,cs,t) <- gen e
let as' = foldr Map.delete as args
tipe = foldr (==>) t $ map (VarT . snd) argDict
genCs (arg,x) = do
v <- guid
let as' = Map.findWithDefault [v] arg as
return $ map (\y -> ctx arg NoSpan $ VarT x :=: VarT y) as'
cs' <- concat `liftM` mapM genCs argDict
scheme <- generalize (concat $ Map.elems as') $
Forall (map snd argDict) (cs' ++ Set.toList cs) tipe
return ( as', Set.empty, (name, scheme) )
stmtGen :: Statement
-> GuidCounter (TVarMap, ConstraintSet, Map.Map String Scheme)
stmtGen stmt =
case stmt of
Definition def -> do (as,cs,hint) <- defGen def
return ( as, cs, uncurry Map.singleton hint )
Datatype name xs tcs ->
let toScheme ts = Forall xs [] (foldr (==>) (ADT name $ map VarT xs) ts)
in return (Map.empty, Set.empty, Map.fromList (map (second toScheme) tcs))
ExportEvent js elm tipe ->
do x <- guid
return ( Map.singleton elm [x]
, Set.singleton . ctx elm NoSpan $ VarT x :=: tipe
, Map.empty )
ImportEvent js e@(C txt span base) elm tipe ->
do (as,cs,t) <- gen e
return ( as
, Set.insert (C txt span (signalOf t :=: tipe)) cs
, Map.singleton elm (Forall [] [] tipe) )
TypeAnnotation name tipe ->
do schm <- generalize [] (Forall [] [] tipe)
return (Map.empty, Set.empty, Map.singleton name schm)
TypeAlias _ _ _ -> return (Map.empty, Set.empty, Map.empty)