elm/compiler/Type/State.hs

157 lines
5 KiB
Haskell
Raw Normal View History

{-# OPTIONS_GHC -XMultiWayIf #-}
module Type.State where
import Type.Type
import qualified Data.Map as Map
import qualified Type.Environment as Env
import qualified Data.UnionFind.IO as UF
import Control.Monad.State
import Control.Applicative ((<$>),(<*>), Applicative)
import qualified Data.Traversable as Traversable
-- todo: remove later
import SourceSyntax.PrettyPrint
-- Pool
-- Holds a bunch of variables
-- The rank of each variable is less than or equal to the pool's "maxRank"
-- The young pool exists to make it possible to identify these vars in constant time.
data Pool = Pool {
maxRank :: Int,
inhabitants :: [Variable]
} deriving Show
emptyPool = Pool { maxRank = 0, inhabitants = [] }
-- Keeps track of the environment, type variable pool, and a list of errors
type SolverState = (Map.Map String Variable, Pool, Int, [String])
-- The mark must never be equal to noMark!
initialState = (Map.empty, emptyPool, noMark + 1, [])
modifyEnv f = modify $ \(env, pool, mark, errors) -> (f env, pool, mark, errors)
modifyPool f = modify $ \(env, pool, mark, errors) -> (env, f pool, mark, errors)
addError err = modify $ \(env, pool, mark, errors) -> (env, pool, mark, err:errors)
switchToPool pool = modifyPool (\_ -> pool)
getPool :: StateT SolverState IO Pool
getPool = do
(_, pool, _, _) <- get
return pool
getEnv :: StateT SolverState IO (Map.Map String Variable)
getEnv = do
(env, _, _, _) <- get
return env
uniqueMark :: StateT SolverState IO Int
uniqueMark = do
(env, pool, mark, errs) <- get
put (env, pool, mark+1, errs)
return mark
nextRankPool :: StateT SolverState IO Pool
nextRankPool = do
pool <- getPool
return $ Pool { maxRank = maxRank pool + 1, inhabitants = [] }
register :: Variable -> StateT SolverState IO Variable
register variable = do
modifyPool $ \pool -> pool { inhabitants = variable : inhabitants pool }
return variable
introduce :: Variable -> StateT SolverState IO Variable
introduce variable = do
pool <- getPool
liftIO $ UF.modifyDescriptor variable (\desc -> desc { rank = maxRank pool })
register variable
flatten :: Type -> StateT SolverState IO Variable
flatten term =
case term of
VarN v -> return v
TermN t -> do
flatStructure <- traverseTerm flatten t
pool <- getPool
var <- liftIO . UF.fresh $ Descriptor {
structure = Just flatStructure,
rank = maxRank pool,
flex = Flexible,
name = Nothing,
copy = Nothing,
mark = noMark
}
register var
makeInstance :: Variable -> StateT SolverState IO Variable
makeInstance var = do
alreadyCopied <- uniqueMark
freshVar <- makeCopy alreadyCopied var
restore alreadyCopied var
return freshVar
makeCopy :: Int -> Variable -> StateT SolverState IO Variable
makeCopy alreadyCopied variable = do
desc <- liftIO $ UF.descriptor variable
if | mark desc == alreadyCopied ->
case copy desc of
Just v -> return v
Nothing -> error "This should be impossible."
| mark desc /= noRank || flex desc == Constant ->
return variable
| otherwise -> do
pool <- getPool
newVar <- liftIO $ UF.fresh $ Descriptor {
structure = Nothing,
rank = maxRank pool,
mark = noMark,
flex = Flexible,
copy = Nothing,
name = case flex desc of
Rigid -> Nothing
_ -> name desc
}
register newVar
-- Link the original variable to the new variable
-- Need to do this before recursively copying to
-- avoid looping on cyclic terms.
liftIO $ UF.modifyDescriptor variable $ \desc ->
desc { mark = alreadyCopied, copy = Just newVar }
case structure desc of
Nothing -> return newVar
Just term -> do
newTerm <- traverseTerm (makeCopy alreadyCopied) term
liftIO $ UF.modifyDescriptor newVar $ \desc ->
desc { structure = Just newTerm }
return newVar
restore :: Int -> Variable -> StateT SolverState IO Variable
restore alreadyCopied variable = do
desc <- liftIO $ UF.descriptor variable
if mark desc /= alreadyCopied then return variable else do
restoredStructure <-
case structure desc of
Nothing -> return Nothing
Just term -> Just <$> traverseTerm (restore alreadyCopied) term
liftIO $ UF.modifyDescriptor variable $ \desc ->
desc { mark = noMark, rank = noRank, structure = restoredStructure }
return variable
traverseTerm :: (Monad f, Applicative f) => (a -> f b) -> Term1 a -> f (Term1 b)
traverseTerm f term =
case term of
App1 a b -> App1 <$> f a <*> f b
Fun1 a b -> Fun1 <$> f a <*> f b
Var1 x -> Var1 <$> f x
EmptyRecord1 -> return EmptyRecord1
Record1 fields ext ->
Record1 <$> Traversable.traverse (mapM f) fields <*> f ext