(Cisco Notes

Yann Esposito

RBAC for clients [2023-04-07 Fri]

Effects for Q4
Visible Changes
Which changes to expects:

1. The User model field role could have more than just admin or user.
2. The access tokens (JWT) claim for role will also have the same new
potential value.

Expected roles for Q4: admin,user,sat,sec-eng,it-ops,observer

During Q4; potentially frequent changes of permission for every role, in particular
for application external to IROH.

JWT detail

Claim prefix for unique identifier: "https://schemas.cisco.com/iroh/identity/clai

n

ms
The claim ... /role will have more values than just user and admin.

Expect this to change, and potentially, the roles could be entirely random ids
without any central static table.

e 1st step: from: admin,user to admin,user,sat
¢ Then more roles will be added; for now admin,user,sat,sec-eng,it-ops,observer

Respect Permissions from tokens

Roles should be easily added/removed, and we even prepared the ability to add
"custom roles". We potentially want to easily changes the permissions associated
to roles. Thus all user’s permissions should pass via scopes.

To check if a token provide some permission you should only check the
scopes of this token. The recommended way to do that is to use the
/iroh/profile/permissions endpoint.


https://schemas.cisco.com/iroh/identity/claims
https://schemas.cisco.com/iroh/identity/claims

1. permissions endpoint (recommended)

This endpoint provides a way to ask with a single HTTP call multiple
different permissions questions using a token:

You provide the endpoint a body with a JSON Object with the following
format:

{"widget-1": ["inspect", "response:read"],
"can-do-x": ["scope-1", "scope-2/sub-scope"]
" ["cisco/feature-flag/xdr"]}

xdr":

And you get back a JSON Object with boolean values:

{"widget-1": true,
"can-do-x": false
"xdr":true}

Using this endpoint will also provide you the opportunity to change your
client configuration to use a new JWT format that is a lot smaller (guar-
anteed to be <4kB).

2. check scopes directly (not recommended)

It is also possible to retrieve the tokens by decoding the JWT directly (or
also calling the /iroh/profile/scopes endpoint). The main issue with
directly checking the list of scopes is that IROH scopes have a tree-like
structure with specific rules and in order to duplicate the permissions
endpoint you need to have a local duplicate library able to understand this
scope structure. For all the technical details see https://github.com/threa
tgrid/scopula/

Notes:

(a) If an entity can have the scopes: foo foo/permission-1
foo/permission-2 it will

be compressed as foo only. So it is up to the client to understand that
the set of scopes foo also implicitly contains foo/permission-1 and
foo/permission-2.

(a) While this is not recommend in general, this could be preferred for
very simple

permission synchronization. For example, for orbital we only have 3
cases, orbital, orbital:read, nothing. No sub-scopes involved, not
many specific permission to manage.

3. Why not check for roles in the JWT?

Say your application should allow be used by admins but not allow any
other role. Say we create a specific scope for your application my-app.


https://github.com/threatgrid/scopula/
https://github.com/threatgrid/scopula/

Currently any admin can create an OAuth2 client without the my-app
scope and thus expect this client not to be allowed to use your application.

If your application only check the role there is no way to construct a client
for an admin that is not allowed to use your application. Worse during
Client creation and Client Authorization, we display a Ul that explain the
permissions associated to every scope.

Pushing your internal permissions inside IROH

If you want PMs to easily change the permissions associated with some role
for your API/Application. You should ask me to add a new scope for your
Application (many already exists, orbital, ao, cognitive, sse, etc...)

From there you can use the notion of sub-scopes to associate different permission
to different roles. Here is an SXO example:

[[:scope "admin" "user" "sat" ]
["ao" TW r_ v ]
["ao/execute" :rw iTW 11

This mean:

e admin will have the full root scope ao granting everything

o user will have only read-only scope for ao (denoted ao:read) providing
read-only access to SXO but will also have the sub-scope ao/execute.

o sat will only have read-only for ao.

So SXO team can, just by looking at the scopes (and not the role anymore)
decide what permissions a token can provide.

This is also very important to use scopes only for permissions because this is the
only single way provided by the OAuth2 RFC to limit permissions to OAuth2
clients. So even though an admin as full SXO access, the same admin might not
want to provide this full access to a 3rd party that uses an OAuth2 client.

Post Q4

Future; potentially, custom roles, which will mean that the list of role will
never be fixed and the relation between a role and a set of permission could be
dynamically changed.

So we need to only care about the permissions (scopes) and not roles that will
be random ids.

OAuth2 Clients Tokens without any scope

Any admin can create an OAuth2 Client Credential client (via the UI). If this
admin does not select any scope the JWT will contains the following properties:



role: "admin"
scopes: []

So according to the role they could do everything. But according to the allowed
permission they should not be allowed to perform most operation.

Regarding the Ul to create such Client it is expected to not be allowed to perform
admin operations at all.



	RBAC for clients [2023-04-07 Fri]
	Effects for Q4
	Visible Changes
	JWT detail
	Respect Permissions from tokens
	Pushing your internal permissions inside IROH

	Post Q4
	OAuth2 Clients Tokens without any scope


