Category Theory &
Programming

for Rivieria Scala Clojure (Note this presentation uses Haskell)

by Yann Esposito
@yogsototh, +yogsototh

ENTER
FULLSCREEN

HTML presentation : Use arrows , Space, swipe to navigate.

1/86

Plan

- General overview
- Definitions

- Applications

2/86

Not really about: Cat & glory

credit to Tokuhiro Kawai (JI|HEE)

3/86

General Overview

Recent Math Field
1942-45, Samuel Eilenberg ¢ Saunders Mac Lane

Certainly one of the more abstract branches of math

- New math foundation
formalism abstraction, package entire theory®

- Bridge between disciplines
Physics, Quantum Physics, Topology, Logic, Computer Science™

% : When is one thing equal to some other thing?, Barry Mazur, 2007
¢ Physics, Topology, Logic and Computation: A Rosetta Stone, John C. Baez, Mike Stay, 2009

4/86

From a Programmer perspective

I Category Theory is a new language/framework for Math

- Another way of thinking

- Extremely efficient for generalization

5/86

Math Programming relation

Programming /s doing Math

Strong relations between type theory and category
theory.

Not convinced?
Certainly a vocabulary problem.

One of the goal of Category Theory is to create a
homogeneous vocabulary between different disciplines.

6/86

Vocabulary

Math vocabulary used in this presentation:

Category, Morphism, Associativity, Preorder, Functor,
Endofunctor, Categorial property, Commutative
diagram, Isomorph, Initial, Dual, Monoid, Natural
fransformation, Monad, Klesli arrows, kata-morphism,

7 /86

Programmer Translation

Mathematician Programmer
Morphism Arrow Al e
Monoid String-like e
Preorder Acyclic graph
Isomorph The same = i
Natural transformation rearrangement funG@or " W
Funny Category LOLCat)

8/86

Plan

- General overview
- Definitions

- Applications

- Category
- Intuition

- Examples
- Functor

- Examples

9/86

Category

A way of representing things and ways to go between things.

A Category \(\mathcal{C}\) is defined by:

- Objects \(\ob{C}\),
- Morphisms \(\hom{C}\),
- a Composition law (-)

- obeying some Properties.

10/86

Category: Objects

\(\ob{\mathcal{C}}\) is a collection

11/86

Category: Morphisms

1 I
I)
62) s -¢2) ERTITLE

\(A\) and \(B\) objects of \(\C\)
\(\nom{A,B}\) is a collection of morphisms
\(f:A—B)\) denote the fact \(\\) belongs to \(\hom{A,B}\)

\(\hom{\C}\) the collection of all morphisms of \(\C\)

12/86

Category: Composition

Composition (-): associate to each couple \(:A—B, g:B—C\) $$g-f:A\rightarrow C$$

\ 9
gof
(4) ~(©)

13/86

Category laws: neutral element

for each object \(X\), there is an \(\id_X:X—=X\),
such that for each \(f:A—B)\):

vd A vdp
€ idpof=f=foida €

@ ~(B)

14 /86

Category laws: Associativity

Composition is associative:

(hog)of=ho(gof)

15/86

Commutative diagrams

Two path with the same source and destination are equal.

A f . B A ’LdA . A
gof 7 hog f
! | f f
B L » C
\/ idp v
\((h-g)-f=h-(g-f)\) B > B

\(id_Bf=f=fid A\

16 /86

Question Time!

o> ¢
P N

- French-only joke -

17 /86

Can this be a category?

\(\ob{\C}\nom{\C}\) fixed, is there a valid -?

nmn o 4 a0 9 a4 Sy
. ’. . L] L]] .v.

[®)

18 /86

Can this be a category?

\(\ob{\C}\nom{\C}\) fixed, is there a valid -?

YES

[®)

19/86

Can this be a category?

\(\ob{\C}\nom{\C}\) fixed, is there a valid -?

O mﬂ i o g o
o] o - >0

[»)

YES no candidate for \(g-f\)
N[@)

[@)

20/ 86

Can this be a category?

\(\ob{\C}\nom{\C}\) fixed, is there a valid -?

O mﬂ i o g o
o] o - >0

[»)

YES no candidate for \(g-f\)
N[@)

[@)

YES

21/86

Can this be a category?

O O
@ B

Can this be a category?

@/_\ vd A f vd g

no candidate for \(f:C—B\)

23/ 86

Can this be a category?

O O
@ B

no candidate for \(f:C—B\)
NO

\((h-g)-f=\id_B-f=f\)
\(h-(g-f)=h-\id_A=h\)
but\(h;tf\)

24/ 86

Categories Examples

- Basket of Cats -

25/ 86

Category \(\Set\)

-\(\ob{\Set}\) are all the sets
-\(\nom{E,F}\) are all functions from \(E\) to \(F\)

- . is functions composition

26/ 86

Category \(\Set\)

-\(\ob{\Set}\) are all the sets
-\(\nom{E,F}\) are all functions from \(E\) to \(F\)

- . is functions composition

-\(\ob{\Set}\) is a proper class ; not a set
-\(\hom{E,F}\) is a set

-\(\Set)) is then a locally small category

27/ 86

Categories Everywhere?

- \(\Mon)\): (monoids, monoid morphisms,)
-\(\Vec\): (Vectorial spaces, linear functions,)
-\(\Grp\): (groups, group morphisms,-)

-\(\Rng\): (rings, ring morphisms,-)

- Any deductive system T: (theorems, proofs, proof
concatenation)

- \(\Hask\): (Haskell types, functions, (.))

28/ 86

Smaller Examples

Strings
- \(\ob{Str}\) is a singleton
-\(\hom{Str}\) each string

- . IS concatenation

—

++)

-"MH++U=U=U++

-(U++V) ++ W =U ++ (V ++ W)

29/ 86

Finite Example?

Graph

-\(\ob{G}\) are vertices /ﬁ_
-\(\hom{G}\) each path @ @
- . is path concatenation . B
“\(0b{G}=\(X,Y,2\N), @)

-\(\hom{G}=Xe,q,B,y,aB,BY,...\}\)
- \(aB-y=aBy\)

30/ 86

Number construction

Each Numbers as a whole category

1

o J -

1dg
¢)

©

_

31/86

Degenerated Categories: Monoids

Each Monoid \((M,e,®): \ob{M}=X - \},}\nom{M}=M,\circ = ©\)
Only one object.

Examples:

- (Integer,0,+), (Integer,1,”),

- (Strings,"",++), for each a, ([al,[],++)

32/86

Degenerated Categories: Preorders \((P,=)\)

- \(ob{P}={P}}),
-\(\hom{x,y}=\Xx=sy\} & x=y\),
- \((y=2z) \circ (x=y) = (x=2) \)

At most one morphism between two objects.

B A<A c<cC D <D
A<LB

33/86

Degenerated Categories: Discrete Categories

Any Set »
Any set \(E: \ob{E}=E, \nom{x,y}=\Xx\} & x=y)
Only identities id A
@
vdo 1dp

34 /86

Choice

The same object can be seen in many different way as a category.
You can choose what are object, morphisms and composition.

ex: Str and discrete()

35/86

Categorical Properties

Any property which can be expressed in term of category, objects, morphism and
composition.

- Dual: \(\D\) is \(\C\) with reversed morphisms.

- Initial: (2NN\ob{\C}\) s.t. \(VvYe\ob{\C}, ¥\hom{Z,Y}=1))
Unigue ("up to isormophism")

- Terminal: \(Min\ob{\C}\) s.t. \(T\) is initial in the dual of \(\C\)

- Functor: structure preserving mapping between categories

36/ 86

Isomorph

isomorphism: \(f:A—B\) which can be "undone" i.e.
\(2g:B—A\), \(g-f=1d_A\) & \(f-g=id_B\)
in this case, \(A\) & \(B\) are isomorphic.

A=B means A and B are essentially the same.
In Category Theory, = is in fact mostly =.

For example in commutative diagrams.

371786

Functor

A functor is a mapping between two categories. Let \(\C\) and \(\D\) be two categories. A
functor \(\F\) from \(\C\) to \(\D\):

- Associate objects: NAIN\ob{\C}))| to N(\F(A)\in\ocb{\D}\)
- Associate morphisms: \(f:A\to BY)| to N\F(f) : \F(A) \to \F(B)\)| such that

-\(\F (Y\Nid_XVYN)= YNNid\)\(\vphantom{id} \F(N)\(\vphantom{\id}_X\)\
(\vphantom{\id} {)}\)

A\ ONGIN)= VNOFONGIND VNCCIreNEONIND Y

38/ 86

Functor Example (ob — ob)

C
.
ida _-"77 idp
"0
idc
R

39/86

Functor Example (hom — hom)

40/ 86

Functor Example

vd

&
Q

@D

a
oy

m/\

J

41/ 86

Endofunctors

An endofunctor for \(\C\) is a functor \(F:\C—=\C\).

€
p

1d 4 1dp
R ()
_/

1do

e

©)

C
1d A 1dp
B
1do

@D

42/ 86

Category of Categories

Categories and functors form a category: \
(\Cat\)

- \(\ob{\Cat}\) are categories
-\(\hom{\Cat}\) are functors

- - is functor composition

43/ 86

Plan

- General overview

- Definitions -\(\Hask)) category
- Functors

- Applications - Natural transformations
- Monads
- KaTa-morphisms

44 | 86

Hask

Category \(\Hask\):

-\(\ob{\Hask} = \) Haskell types e
-\(\nom{\Hask} =\) Haskell functions @ tail

- . =|(.) Haskell function composition

Forget glitches because of jundefined.

45/ 86

Haskell Kinds

—

al.

In Haskell some types can take type variable(s). Typically:

Types have kinds; The kind is to type what type is to function. Kind are the types for
types (so meta).

Int, Char :: *

[, IVIaybe :

[, () 5 * >

[Int], Maybe Char, Maybe [Int] ::

46 / 86

Haskell Types

Sometimes, the type determine a lot about the function:

fst :: (a,b) -> a -- Only one choice

snd :: (a,b) -> b -- Only one choice
f:ra->[a] --Many choices

-- Possibilities: f x=[], or [x], or [x,x] or [X,...,X]

? .. [a] == [a] -- Many choices

-- can only rearrange: duplicate/remove/reorder elements
-- for example: the type of addOne isn't [a] -> [a]

addOne | = map (+17) |

-- The (+1) force ‘a'to be a Num.

% :Theorems for free!, Philip Wadler, 1989

47] 86

Haskell Functor vs \(\Hask\) Functor

A Haskell Functor is a type F :: * -> * which belong to the type class Functor ; thus
instantiate fmap :: (a ->b) -> (F a->F b).

F:\(\ob{\Hask}—\ob{\Hask}\)
& fmap: \(\hom{\Hask}—=\hom{\Hask}\)

The couple (F,fmap) is a \(\Hask\)'s functor if for any x :: F a:

- fmap id x = x

- fmap (f.g) x= (fmap f . fmap g) x

48 / 86

Haskell Functors Example: Maybe

data Maybe a = Just a | Nothing

instance Functor Maybe where
fmap :: (a -> b) -> (Maybe a -> Maybe b)
fmap f (Just a) = Just (f a)
fmap f Nothing = Nothing

fmap (+1) (Just 1) == Just 2
fmap (+1) Nothing == Nothing
fmap head (Just [1,2,3]) == Just 1

49/ 86

Haskell Functors Example: List

instance Functor ([]) where
fmap :: (a ->b) ->[a] -> [b]
fmap = map

fmap (+1) [1,2,3] ==[2,3,4]
fmap (+1) [] == []
fmap head [[1,2,3],[4, 5,6]] == [1,4]

50/ 86

Haskell Functors for the programmer

Functor is a type class used for types that can be mapped over.

- Containers: [[], Trees, Map, HashMap...

- "Feature Type":

- Maybe a: help to handle absence of a.
Ex: safeDiv x 0 = Nothing

- Either String a: help to handle errors
Ex: reportDiv x 0 = Left "Division by 0!"

51/ 86

Haskell Functor intuition

Put normal function inside a container. Ex: list, trees...

—
— e a— —

52/ 86

Haskell Functor properties

Haskell Functors are:

- endofunctors ; \(F\C—\C\) here \(\C =\Hask)\),
- a couple (Object,Morphism) in \(\Hask\).

53/ 86

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions.

Haskell types is fractal:

//

fmap sqrt

Gi;;;iD

fmap tail

@‘

54/ 86

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions.

Haskell types is fractal:

——————-——
- -

fmap sqrt

&

/f
~
~
~

fmap tail

=

—
=
- -—

L
-—._.__.-
—
-

-
-
e e

map id
fmap length
F Int)=

-
-
-

'

55/ 86

Functor as boxes

Haskell functor can be seen as boxes containing all Haskell types and functions.
Haskell types is fractal:

77

-
P

-
-—
-
e ———-——

56 / 86

"Non Haskell" Hask's Functors

A simple basic example is the \(id_\Hask\) functor. It simply cannot be expressed as a
couple (F,fmap) where

5 F..* _> *

-fmap :: (a->b) -> (F a) -> (F b)

Another example:

- F(T)=Int
- F(f)=_->0

57/ 86

Also Functor inside \(\Hask\)

\(\mathtt{[a]}e\ob{\Hask}\) but is also a category. Idem for

Int.

length is a Functor from the category [a] to the cateogry

Int;

-\(\ob{\mathtt{[a]}}=X - \}\)

- \(\hom{\mathtt{[a]}}=\matht{[a]}\ = - \(\hom{\mathtt{Int}}=\matht¥{Int}\)
- \(-=\mathtt{(++)}\) - \(-=\mathtt{(+)}\)
-id: length [] =0

- comp: length (I ++ I') = (length I) + (length I')

- \(\ob{\matht{Inth=\ - \\)

58 / 86

Category of \(\Hask\) Endofunctors

fmap tail

fmap tail

59/ 86

Category of Functors

It \(\C\) is small \(\nom{\C}\) is a set). All functors from \(\C\) to some category \(\D\) form
the category \(\mathrm{Func}(\C,\D)\).

- \(\ob{\mathrm{Func}(\C,\D)}\): Functors \(F:\C—\D\)
-\(\hom{\mathrm{Func}(\C,\D)}\): natural transformations

- .. Functor composition

\(\mathrm{Func}(\C,\C)\) is the category of endofunctors of \(\C)).

60 / 86

Natural Transformations

Let \(F\) and \(G\) be two functors from \(\C\) to \(\D\).

A natural transformation: familly n ; \(n_X\in\nom{\D}\) for

ex: between Haskell functors; Fa-> G a
Rearragement functions only. nNx

GX

Ff
»[Y
Uh%
Gf v
»GY

61 /86

Natural Transformation Examples (1/4)

data List a = Nil | Cons a (List a)
toList :: [a] -> List a

toList [] = Nil

toList (x:xs) = Cons x (toList xs)

toList is a natural transformation. It is also a morphism from [] to List in the Category of \

(\Hask\) endofunctors.

fmapp £ tolList

2] > [b] @

tolList tolList

fmaprist £
List a » List b

62/ 86

Natural Transformation Examples (2/4)

data List a = Nil | Cons a (List a)
toHList :: List a -> [a]

toHList Nil =]

toHList (Cons x xs) = x:toHList xs

toHList is a natural transformation. It is also a morphism from [List to [] in the Category
of \(\Hask\) endofunctors.

fmapp £ tolList

' Kl @ toHList

tolList || toHList toHList || tolList

" o toList . toHList = id &toHList . toList = id
List a - = s T therefore [] & List are isomorph.

63/ 86

Natural Transformation Examples (3/4)

toMaybe :: [a] -> Maybe a
toMaybe [] = Nothing
toMaybe (x:xs) = Just x

toMaybe is a natural transformation. It is also a morphism from [] to Maybe in the

Category of \(\Hask\) endofunctors.

fmapp £ toMaybe

[a] > [b]
W

toMaybeI |toMaybe
fmapnaybe f

Maybe a » Maybe b

64 / 86

Natural Transformation Examples (4/4)

mToList :: Maybe a -> [a]
mToList Nothing =[]
mToList Just x = [X]

toMaybe is a natural transformation. It is also a morphism from [] to Maybe in the

Category of \(\Hask\) endofunctors.

fmap) £ toMaybe
) - [v] |
@ mToList

There is no isomorphism.
fmapMaybe f)) p
Maybe a » Maybe b Hint: Bool lists longer than 1.

mToList mToList

65/ 86

Composition problem

The Problem; example with lists:

gx=[x+1] =g1=[2] = (g.)[I
hx=[x+1,x*3] = h1=[2,3] = (h.h)

(o]

f x =[X] =f1=[1] = ({H)1=[1]]X
;

-

ERROR [2]+1 X
= ERROR [2,3]+1 X

The same problem with mostf::a->F a

functions and functor F.

66 / 86

Composition Fixable?

How to fix that? We want to construct an operator which is able to compose:

fra->Fbé&g:b->Fc.

More specifically we want to create an operator © of type

O:(b->Fc)->(a->Fb)->(a->Fc)

Note: if F =1, © = (.).

67 / 86

Fix Composition (1/2)

Goal, find: © : (b->Fc)->(a->Fb) ->(a->F c)
fr:a->Fb,g:b->Fc:

-(QOfHx 2?2
- First apply ftox = fx: Fb

- Then how to apply g properly to an element of type

F b

68 / 86

Fix Composition (2/2)

Goal, find: © : (b->Fc)->(a->Fb) ->(a->F c)

f

ca->Fb,g:b->Fc,fx:Fb:

-Use fmap :: (t->u) > (Ft->F u)

- We lack an important component,

(fmap g) : Fb->F (Fc) ; (t=b, u=F c)

(fmap g) (f x) :: F (F c) it almost WORKS!

join::F(Fc)>Fc

(9 © f) x = join ((fmap g) (fx)) ©

© is the Kleisli composition; in Haskell:

<=

(in

Control.Monad).

S

69 / 86

Necessary laws

For © to work like composition, we need join to hold the following properties:

join (join (F (F (F a))))=join (F (join (F (F a))))

abusing notations denoting

join

(FoF)oF=Fo(FoF)

There exists n:a->F a s.t.

nokF=F=Fon

by O; this is equivalent to

70/ 86

Klesli composition

Now the composition works as expected. In Haskell © is

g <=<f=WX->join ((fmap g) (f

)

<=< |

Control.Monad.

fx =[X] =f1=[1] = (f<=
gx=[x+1] =g1=[2] =(g
hx=[x+1x*3]=h1=[2,3] =

<f)
<=

(h<

/\

71/ 86

We reinvented Monads!

A monad is a triplet (M,©,n) where

-\(M\) an Endofunctor (to type |a associate M a)

-\(0:MxM—M\) a nat. trans. (i.,e. ©::M (Ma) > M a ; join

o —

-\(n:1I—=M\) a nat. trans. (\(I\) identity functor ; n::a - M a

e

Satisfying

-\Mo (Mo M)=(Mo M) oM\
-\noM=M=Mon)

72/ 86

Compare with Monoid

A Monoid is a triplet \((E, - ,e)\) s.1.

- \(E\) a set
-\(::ExE—E\
-\(e:1—E\)

Satisfying

-\(X-(y-2) =(x-y)-z, vX,y,zeE\)

-\(e-x=x=x-e, vxeE\)

73/ 86

Monads are just Monoids

I A Monad is just a monoid in the category of endofunctors, what's the problem?
The real sentence was:

All told, a monad in X is just a monoid in the category of endofunctors of X, with
product x replaced by composition of endofunctors and unit set by the identity
endofunctor.

74/ 86

Example: List

-[] :: * ->* an Endofunctor

S

-\(©0:MxM—M\) a nat. trans. (join :: M (M a) ->M a

-\(n:I—M\) a nat. trans.

-- In Haskell © is "join" in "Control. Monad"
join :: [[a]] -> [a]
join = concat

-- In Haskell the "return” function (unfortunate name)
n:a->|[a]
N x = [x]

75/ 86

Example: List (law verification)

Example: LList is a functor (join|is ©)

-\Mo Mo M)=(Mo M) o M\
-\noM=M=Mon)

join [join [[x,y,...,2]] | = join [[x,Y,...,Z]]
- = join (Join [[[x,Y,---,Z]]])
join (n [X]) = [x] = join [n x]

Therefore |([],join,n) is a monad.

76/ 86

Monads useful?

A LOT of monad tutorial on the net. Just one example; the State Monad

DrawScene| to State Screen DrawScene ; still pure.
main = drawlmage (width,height) main = do
put (Screen 1024 768)
drawlmage :: Screen -> DrawScene drawlmage
drawlmage screen = do
drawPoint p screen drawlmage :: State Screen DrawScene
drawCircle ¢ screen drawlmage = do
drawRectangle r screen drawPoint p
drawCircle ¢
drawPoint point screen = ... drawRectangle r
drawCircle circle screen = ...
drawRectangle rectangle screen = ... drawPoint :: Point -> State Screen DrawScene
drawPoint p = do
Screen width height <- get

77186

fold

78/ 86

Kata-morphism

79/ 86

Kata-morphism: fold generalization

acCC

type of the "accumulator":

fold ::

(acc -> a -> acc) -> acc -> [a] -> acc

|ldea: put the accumulated value inside the type.

-- Equivalent to fold (+1) 0 "cata”

(Cons 'c' (Cons 'a' (Cons 't' (Cons 'a' Nil))))
(Cons 'c' (Cons 'a' (Cons 't' Cons a'0))))
(Cons 'c' (Cons 'a' Cons il

(Cons 'c! Cons a'?2

Cons 'c'

But where are all the informations? |(+1

o —

and 017

80/ 86

Kata-morphism: Missing Information

Where is the missing information?

- Functor operator fmap

- Algebra representing the

First example, make

(+1)

length

on

and also knowing about the 0.

[Char]

81/86

Kata-morphism: Type work

data StrF a = Cons Char a | Nil
data Str' = StrF Str'

-- generalize the construction of Str to other datatype
-- Mu: type fixed point
-Mu:(*->%)->"

data Mu f = InF { outF :: f (Mu f) }
data Str = Mu StrF

-- Example
foo=InF { outF = Cons 'f'
(InF { outF = Cons 'o'
(InF { outF = Cons o'

(InF { outF = Nil })})})}

82/ 86

Kata-morphism: missing information retrieved

type Algebrafa=fa->a
instance Functor (StrF a) =
fmap f (Cons ¢ x) = Cons c (f x)
fmap _ Nil = Nil

cata :: Functor f => Algebrafa >Muf->a
cataf =f. fmap (cata f) . outF

83/ 86

Kata-morphism: Finally length

All needed information for making length.

instance Functor (StrF a) =
fmap f (Cons ¢ x) = Cons c (f x)
fmap _ Nil = Nil

length' :: Str -> Int

length' = cata phi where
phi :: Algebra StrF Int -- StrF Int -> Int
phi (Consab)=1+b
phi Nil =0

main = do
| <- length' $ stringToStr "Toto"

84 /86

Kata-morphism: extension to Trees

Once you get the trick, it is easy to extent to most Functor.

type Tree = Mu TreeF
data TreeF x = Node Int [x]

instance Functor TreeF where
fmap f (Node e xs) = Node e (fmap f xs)

depth = cata phi where
phi :: Algebra TreeF Int -- TreeF Int -> Int
phi (Node x sons) = 1 + foldr max O sons

85/ 86

Conclusion

Category Theory oriented Programming:

- Focus on the type and operators
- Extreme generalisation
- Better modularity

- Better control through properties of types

No cat were harmed in the making of this presentation.

86/ 86

